精英家教网 > 高中数学 > 题目详情
16.从A点斜向上抛出一个小球,曲线ABCD是小球运动的一段轨迹,建立如图所示的正交坐标系xOy,x轴沿水平方向,轨迹上三个点的坐标分别为A(-L,0),C(L,0),D(2L,3L),小球受到的空气阻力忽略不计,轨迹与y轴的交点B的坐标为(  )
A.(0,-$\frac{L}{2}$)B.(0,-L)C.(0,-$\frac{3L}{2}$)D.(0,-2L)

分析 由函数图象可知,轨迹为二次函数,开口向下且过点(-L,0)和(L,0),设函数解析式y=-a(x-L)(x+L),将(2L,3L)代入方程求出解析式,再将x=0代入,即求得B的纵坐标.

解答 解:由函数图象可知,轨迹为二次函数,过点(-L,0)和(L,0),设函数解析式y=-a(x-L)(x+L)
将(2L,3L)代入方程,解得a=-$\frac{1}{L}$
y=$\frac{1}{L}$(x-L)(x+L),将x=0代入得y=-L
故答案选B

点评 本题主要考察二次函数解析,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,若命题p:$\overrightarrow{a}$•$\overrightarrow{b}$>0,命题q:$\overrightarrow{a}$,$\overrightarrow{b}$夹角是锐角,则命题p是命题q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知随机变量ξ服从正态分布N(2,σ2),若P(X<a)=0.28,则P(a≤X≤4-a)=0.44.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列关于概率和统计的几种说法:①10名工人某天生产同一种零件,产生的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则a,b,c的大小为c>a>b;②样本4,2,1,0,-2的标准差是2;③在面积为S的△ABC内任选一点P,则随机事件“△PBC的面积小于$\frac{S}{3}$”的概率为$\frac{1}{3}$;④从写有0,1,2,…,9的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率为$\frac{9}{10}$.其中正确说法的序号有④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求x+3x2+5x3+…+(2n-1)xn的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知cos(α+$\frac{π}{2}$)=$\frac{3}{5}$,-$\frac{π}{2}$<α<$\frac{π}{2}$,则sin2α的值等于(  )
A.$\frac{12}{25}$B.-$\frac{12}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.记z=x+ky+1,(k∈R),其中x,y满足$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,若z的最大值为3,则实数k的值为0,z的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\sqrt{{x}^{2}+1}$-ax(其中a>0)在区间[0,+∞)上是单调函数,则实数a的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,如果定义函数f(x)=x-[x],那么下列命题中正确的序号有(  )
①f(x)的定义域为R,值域为[0,1]②f(x)在区间[0,1)上单调递增
③f(x)既不是奇函数也不是偶函数       ④函数f(x)与g(x)=log5(-x)图象有5个交点.
A.①②③B.②③C.①②③④D.②③④

查看答案和解析>>

同步练习册答案