精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\sqrt{{x}^{2}+1}$-ax(其中a>0)在区间[0,+∞)上是单调函数,则实数a的取值范围为[1,+∞).

分析 求导数便可得到$f′(x)=\frac{x}{\sqrt{{x}^{2}+1}}-a$,从而x∈[0,+∞)便有$\frac{x}{\sqrt{{x}^{2}+1}}≥0$,这样根据f(x)在[0,+∞)上是单调函数便可得出a≤0,即得出了实数a的取值范围.

解答 解:$f′(x)=\frac{x}{\sqrt{{x}^{2}+1}}-a$;
∵f(x)在区间[0,+∞)上是单调函数,且x∈[0,+∞)时,$\frac{x}{\sqrt{{x}^{2}+1}}=\frac{1}{\sqrt{1+\frac{1}{{x}^{2}}}}$;
∴$0≤\frac{x}{\sqrt{{x}^{2}+1}}<1$;
又a>0;
∴a≥1;
∴a的取值范围为[1,+∞).
故答案为:[1,+∞).

点评 考查函数单调性和函数导数符号的关系,以及复合函数的求导公式,注意正确求导.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若关于x的方程(5x+$\frac{5}{x}$)-|4x-$\frac{4}{x}$|=m在(0,+∞)内恰有四个相异实根,则实数m的取值范围为(6,10).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从A点斜向上抛出一个小球,曲线ABCD是小球运动的一段轨迹,建立如图所示的正交坐标系xOy,x轴沿水平方向,轨迹上三个点的坐标分别为A(-L,0),C(L,0),D(2L,3L),小球受到的空气阻力忽略不计,轨迹与y轴的交点B的坐标为(  )
A.(0,-$\frac{L}{2}$)B.(0,-L)C.(0,-$\frac{3L}{2}$)D.(0,-2L)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\overrightarrow{i}$、$\overrightarrow{j}$均为单位向量,且互相垂直,且$\overrightarrow{a}$=3$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow{b}$=-6$\overrightarrow{i}$+$\overrightarrow{j}$,而($λ\overrightarrow{a}+\overrightarrow{b}$)⊥($\overrightarrow{a}-λ\overrightarrow{b}$),求λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若变量x,y满足约束条件$\left\{\begin{array}{l}{2x-y≤0}\\{x+y-3≥0}\\{x+2y≤m}\end{array}\right.$,且z=x-y的最小值为-3,则x2+y2的最小值是5,实数m的值为6.•

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知${∫}_{0}^{2}$(3x2+k)dx=16,则k=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.${27^{-\frac{1}{3}}}-{log_8}2$的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在△ABC中,角A,B,C所对的边分别为a,b,c,sinA=$\frac{1}{4}$acosB,b=4$\sqrt{3}$.
(1)若c=2$\sqrt{7}$,求cosC;
(2)D为BC边上一点,若AD=2,S△DAC═2$\sqrt{3}$,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若实数x,y满足$\left\{\begin{array}{l}{x+y≥0}\\{x≤1}\\{x-2y≥0}\end{array}\right.$,则x的取值范围是[0,1],|x|+|y|的取值范围是[0,2].

查看答案和解析>>

同步练习册答案