精英家教网 > 高中数学 > 题目详情
8.已知圆O:x2+y2=r2与圆C:(x-2)2+y2=r2(r>0)的一个公共点P,过P作与x轴平行的直线分别交两圆于A,B两点(不同于P点),且OA⊥OB,则r=2.

分析 根据题意,画出图形,结合图形得出点P的横坐标,再根据题意列出方程组,解方程组求出半径r的值.

解答 解:如图所示,
圆O:x2+y2=r2与圆C:(x-2)2+y2=r2(r>0)的一个公共点P,
∴点P的横坐标为x=1;
又过点P作与x轴平行的直线分别交两圆于A,B两点,
设A(x1,y1),B(x2,y2),则$\left\{\begin{array}{l}{{y}_{1}{=y}_{2}}\\{{x}_{1}{+x}_{2}=2}\end{array}\right.$;
又OA⊥OB,∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=0,
且${{x}_{1}}^{2}$+${{y}_{1}}^{2}$=r2,${{(x}_{2}-2)}^{2}$+${{y}_{2}}^{2}$=r2
由此解得r=2.
故答案为:2.

点评 本题考查了直线与圆的应用问题,也考查了数形结合解题方法的问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.使(x2+$\frac{1}{2{x}^{3}}$)n(n∈N)展开式中含有常数项的n的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.方程|x2-a|-x+2=0(a>0)有两个不等的实数根,则实数a的取值范围是a>4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\frac{4^x}{{{4^x}+1}}$,则f(-2016)+f(-2015)+…+f(-1)+f(0)+f(1)+f(2)+…+f(2015)+f(2016)=(  )
A.2016B.2017C.$\frac{4033}{2}$D.4033

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=x+lg\frac{1+x}{1-x}+5,且f(a)=6,则f(-a)$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=$2sin(wx+\frac{π}{6})(w>0,x∈R)$,最小正周期T=π,则实数ω=2,函数f(x)的图象的对称中心为($\frac{kπ}{2}$-$\frac{π}{12}$,0),k∈Z,单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知等差数列{an}的公差d≠0,且a1,a3,a9构成等比数列{bn}的前3项,则$\frac{{{a_1}+{a_3}+{a_6}}}{{{a_2}+{a_4}+{a_{10}}}}$=$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y满足约束条件$\left\{\begin{array}{l}x≤-2\\ 3x+y≤-1\\ y≥-x+1\end{array}\right.$,则目标函数z=-x+2y的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.i是虚数单位,若$\frac{1+7i}{2-i}$=a+bi(a,b∈R),则a+b的值是(  )
A.2B.-2C.3D.-3

查看答案和解析>>

同步练习册答案