精英家教网 > 高中数学 > 题目详情
椭圆
x2
4
+
y2
b2
=1(b>0)的焦点在x轴上,左焦点为(-c,0),其右顶点关于直线x-y+4=0的对称点在直线x=-
4
c
上,
(1)求椭圆的方程;
(2)过椭圆的左焦点F的直线l交椭圆于A、B两点,交直线x=-
4
c
于点C,设O为坐标原点,且
OA
+
OC
=2
OB
,求△OAB的面积.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)利用轴对称的性质、椭圆的标准方程及其性质即可得出;
(2)把直线l的方程与椭圆方程联立得到根与系数的关系,再利用向量运算及其相等即可得出.
解答: 解:(1)椭圆的右顶点为(2,0).
设(2,0)关于直线x-y+4=0的对称点为(x0,y0),则
x0+2
2
-
y0
2
+4=0
y0
x0-2
=-1

解得:x0=-4
4
c
=4
,∴c=1,
b=
a2-c2
=
3

∴所求椭圆方程为
x2
4
+
y2
3
=1

(2)设A(x1,y1),B(x2,y2),C(-4,y3
椭圆的左焦点F的直线l的方程为y=k(x+1),代入椭圆方程得:(3+4k2)x2+8k2x+4k2-12=0
∴x1+x2=-
8k2
3+4k2
①,x1x2=
4k2-12
3+4k2
②.
OA
+
OC
=2
OB

∴(x1,y1)+(-4,y3)=2(x2,y2
∴2x2-x1=-4③.
由①③得:x2=-
4+8k2
3+4k2
,x1=
4
3+4k2

代入②整理得:4k4-k2-5=0.
k2=
5
4

∴x2=-
7
4
,x1=
1
2

由于对称性,只需求k=
5
2
时,△OAB的面积,
此时,y1=
3
5
4
,y2=-
3
5
8

∴△OAB的面积为
1
2
|OF||y1-y2|=
9
5
16
点评:本题考查椭圆的方程,掌握轴对称的性质、椭圆的标准方程及其性质、直线与椭圆相交问题转化为把直线的方程与椭圆方程联立得到根与系数的关系、向量运算及其相等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(1,x),
b
=(x-1,2),若
a
b
,则x=(  )
A、-1或2B、-2或1
C、1或2D、-1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a1
=(1,-7)
d
=(1,1)
,对任意n∈N*都有
an+1
=
an
+
d

(1)求|
an
|
的最小值;
(2)求正整数m,n,使
am
an

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
a2
+
y2
b2
(a>b>0)的离心率e=
6
3
,短轴长为2.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
3
2
,直线y=x+
2
与以原点为圆心、椭圆C的短半轴长为半径的圆O相切.
(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,求证:2m-k为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,若它落在阴影区域内的概率为
3
5
,则阴影区域的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若(a+i)(2+i)是纯虚数(i是虚数单位),则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,1]上随机地任取两个数a,b,则满足a2+b2
1
4
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x∈R|-1≤x≤1},B={x∈R|x(x-3)≤0},则A∩B等于(  )
A、{x∈R|-1≤x≤3}
B、{x∈R|0≤x≤3}
C、{x∈R|-1≤x≤0}
D、{x∈R|0≤x≤1}

查看答案和解析>>

同步练习册答案