精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+
x-2x+1
(a>1),求证:
(1)函数f(x)在(-1,+∞)上为增函数;
(2)方程f(x)=0没有负数根.
分析:(1)证明函数的单调性,一个重要的基本的方法就是根据函数单调性的定义;
(2)对于否定性命题的证明,可用反证法,先假设方程f(x)=0有负数根,经过层层推理,最后推出一个矛盾的结论.
解答:证明:(1)设-1<x1<x2
f(x1)-f(x2)=ax1+
x1-2
x1+1
-ax2-
x2-2
x2+1

=ax1-ax2+
x1-2
x1+1
-
x2-2
x2+1
=ax1-ax2+
3(x1-x2)
(x1+1)(x2+1)

∵-1<x1<x2,∴x1+1>0,x2+1>0,x1-x2<0,
3(x1-x2)
(x1+1)(x2+1)
<0

∵-1<x1<x2,且a>1,∴ax1ax2,∴ax1-ax2<0
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函数f(x)在(-1,+∞)上为增函数;
(2)假设x0是方程f(x)=0的负数根,且x0≠-1,则ax0+
x0-2
x0+1
=0

ax0=
2-x0
x0+1
=
3-(x0+1)
x0+1
=
3
x0+1
-1
,①
当-1<x0<0时,0<x0+1<1,∴
3
x0+1
>3

3
x0+1
-1>2
,而由a>1知ax0<1.∴①式不成立;
当x0<-1时,x0+1<0,∴
3
x0+1
<0
,∴
3
x0+1
-1<-1
,而ax0>0
∴①式不成立.综上所述,方程f(x)=0没有负数根.
点评:(1)函数的单调性就是随着x的变大,y在变大就是增函数,y变小就是减函数,具有这样的性质就说函数具有单调性,符号表示:就是定义域内的任意取x1,x2,且x1<x2,比较f(x1),f(x2)的大小 (当f(x1)<f(x2)则是增函数,当f(x1)>f(x2)则是减函数);
(2)方程的根,就是指使方程成立的未知数的值.对于结论是否定形式的命题,往往用反证法证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案