精英家教网 > 高中数学 > 题目详情

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?

(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

【答案】1)(0 2+∞);(2)矩形花坛的面积最小为8平方米.

【解析】试题分析:(1)由列出函数关系式,通分化成标准形式,再求分式不等式的解集;(2)化简矩形的面积,利用基本不等式,即可求解.

试题解析:(1)设DN的长为xx0)米,则|AN|=x+1)米,

|AM|=S矩形AMPN=|AN||AM|=

S矩形AMPN99,又x02x2-5x+20,解得0xx2

DN的长的取值范围是(0 2+∞).(单位:米)

2)因为x0,所以矩形花坛的面积为:

y==2x++4≥4+4=8,当且仅当2x=,即x=1时,等号成立.

答:矩形花坛的面积最小为8平方米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△ABC是边长为1的正三角形,点P1 , P2 , P3四等分线段BC(如图所示).

(1)求 + 的值;
(2)Q为线段AP1上一点,若 =m + ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x2+2(k﹣1)x+k+5.
(1)求函数f(x)在[0,3]上最大值;
(2)若函数f(x)在[0,3]上有零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(Ⅰ)求的单调区间;

时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产ABC三种家电,经市场调查决定调整生产方案,计划本季度(按不超过480个工时计算)生产ABC三种家电共120台,其中A家电至少生产20台,已知生产ABC三种家电每台所需的工时分别为346个工时,每台的产值分别为203040千元,则按此方案生产,此季度最高产值为(  )千元.

A. 3600 B. 350 C. 4800 D. 480

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)如果对任意 恒成立,求的取值范围;

(2)若函数有两个零点,求的取值范围;

(3)若函数的两个零点为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数m取什么数值时,复数z=m2﹣1+(m2﹣m﹣2)i分别是:
(1)实数;
(2)虚数;
(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1,求函数的极值;

2 时,判断函数在区间上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+ln(x+1).
(1)当a=﹣ 时,求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,+∞)上为减函数,求实数a的取值范围;
(3)当x∈[0,+∞)时,不等式f(x)﹣x≤0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案