精英家教网 > 高中数学 > 题目详情
15.已知α∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,则tan(α+$\frac{3π}{4}$)=-7.

分析 由已知及同角三角函数基本关系的运用可求cosα,tanα,利用两角和的正切函数公式即可得解.

解答 解:∵α∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,
∴cos$α=-\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,
∴tan(α+$\frac{3π}{4}$)=$\frac{tanα+tan\frac{3π}{4}}{1-tanαtan\frac{3π}{4}}$=$\frac{-\frac{3}{4}-1}{1-\frac{3}{4}}$=-7.
故答案为:-7.

点评 本题主要考查了运用诱导公式化简求值,同角三角函数基本关系的运用,两角和的正切函数公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数y=$\frac{{x}^{3}}{{3}^{x}-1}$的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.6本相同的数学书和3本相同的语文书分给9个人,每人1本,共有不同分法(  )
A.C${\;}_{9}^{3}$B.A${\;}_{9}^{3}$C.A${\;}_{9}^{6}$D.A${\;}_{9}^{3}$•A${\;}_{3}^{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.曲线y=ax2在点x=1处的切线的倾斜角不小于$\frac{π}{4}$,则a的取值范围(-∞,0)∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=sin2($\frac{ω}{2}$x-$\frac{π}{4}$)(ω>0)的最小正周期为π,则ω为(  )
A.2B.$\frac{1}{2}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.x的取值范围为[0,10],给出如图所示程序框图,输入一个数x.
(1)请写出程序框图所表示的函数表达式;
(2)求输出的y(y<5)的概率;
(3)求输出的y(6<y≤8)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某中学对高二甲、乙两个同类班级,进行“加强‘语文阅读理解’训练,对提高‘数学应用题’得分率的作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下61-70分71-80分81-90分91-100分
甲班(人数)361118
12乙班(人数)713101010
现规定平均成绩在80分以上(不含80分)的为优秀.
(I)试分析估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2x2列联表,根据以上数据,能杏有95%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助?
优秀人数非优秀人数合计
甲班
乙班
合计
参考公式及数据:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(x2≥k00.500.400.250.150.100.050.0280.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn=$\frac{3}{2}$n2+$\frac{n}{2}$,数列{bn}满足b1=2且bn=2bn-1(n≥2,n∈N*).
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=a${\;}_{{b}_{n}}$,数列{cn}的前n项和为Sn,集合A={n∈N*|Sn>6•2n+n2-8n},求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若sin(A-B)=1+2cos(B+C)sin(A+C),则△ABC的形状一定是(  )
A.等边三角形B.不含60°的等腰三角形
C.钝角三角形D.直角三角形

查看答案和解析>>

同步练习册答案