精英家教网 > 高中数学 > 题目详情
18.已知sinα=$\frac{2\sqrt{5}}{5}$,α∈($\frac{π}{2}$,π).
(1)求cos(α+$\frac{π}{3}$)的值;
(2)求sin($\frac{3π}{4}$-2α)的值.

分析 由已知求得cosα,再由二倍角公式求得sin2α,cos2α.
(1)直接展开两角和的余弦求得cos(α+$\frac{π}{3}$)的值;
(2)展开两角差的正弦求得sin($\frac{3π}{4}$-2α)的值.

解答 解:∵sinα=$\frac{2\sqrt{5}}{5}$,α∈($\frac{π}{2}$,π),∴cosα=-$\sqrt{1-si{n}^{2}α}=-$$\sqrt{1-(\frac{2\sqrt{5}}{5})^{2}}=-\frac{\sqrt{5}}{5}$.
(1)cos(α+$\frac{π}{3}$)=cosαcos$\frac{π}{3}-sinαsin\frac{π}{3}$=$-\frac{\sqrt{5}}{5}×\frac{1}{2}-\frac{2\sqrt{5}}{5}×\frac{\sqrt{3}}{2}=-\frac{2\sqrt{15}+\sqrt{5}}{10}$;
(2)∵sinα=$\frac{2\sqrt{5}}{5}$,cosα=$-\frac{\sqrt{5}}{5}$,∴sin2α=2sinαcosα=2×$\frac{2\sqrt{5}}{5}×(-\frac{\sqrt{5}}{5})=-\frac{4}{5}$,
cos2α=$2co{s}^{2}α-1=2×(-\frac{\sqrt{5}}{5})^{2}-1=-\frac{3}{5}$.
∴sin($\frac{3π}{4}$-2α)=$sin\frac{3π}{4}cos2α-cos\frac{3π}{4}sin2α$=$\frac{\sqrt{2}}{2}×(-\frac{3}{5})-\frac{\sqrt{2}}{2}×(-\frac{4}{5})=\frac{\sqrt{2}}{10}$.

点评 本题考查三角函数的化简求值,考查了三角函数中的恒等变换应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设Sn为数列{an}的前n项和,已知下列各式,n∈N*,求通项公式an
(1)Sn=2n2+n;
(2)Sn=2n2+3n+1;
(3)an=5Sn+1;
(4)a1=1,an=2Sn(n≥2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知θ为第二象限角,且cos$\frac{θ}{2}$=-$\frac{1}{2}$,那么$\frac{\sqrt{1-sinθ}}{cos\frac{θ}{2}-sin\frac{θ}{2}}$的值是(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算下列各式:
(1)($\frac{1-\sqrt{3}i}{1+i}$)2
(2)i2012+($\sqrt{2}$+$\sqrt{2}$i)8-($\frac{\sqrt{2}}{1-i}$)50

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC在平面内,点P在外,PC⊥面ABC,且∠BPA=90°,则∠BCA是(  )
A.直角B.锐角C.钝角D.直角或锐角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tanα=-$\frac{3}{4}$,α∈($\frac{π}{2}$,π),求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}中,a1•a3=4a2,a5=32.
(1)求数列{an}的通项公式;
(2)设bn=log2an,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设m∈R,实数满足$\left\{{\begin{array}{l}{x≥m}\\{2x-3y+6≥0}\\{3x-2y-6≤0}\end{array}}\right.$,若|x+2y|≤18,则实数m的取值范围是(  )
A.-3≤m≤6B.m≥-3C.$-\frac{68}{7}≤m≤6$D.$-3≤m≤\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,a1=-2012,其前n项和为Sn,若$\frac{{{S_{2012}}}}{2012}$-$\frac{{{S_{10}}}}{10}$=2002,则S2014的值等于(  )
A.2011B.-2012C.2014D.2013

查看答案和解析>>

同步练习册答案