精英家教网 > 高中数学 > 题目详情

设各项均为正数的数列的前项和为,满足构成等比数列.(1) 证明:;(2) 求数列的通项公式;(3) 证明:对一切正整数,有.

(1)证明见解析;(2);(3)证明见解析.

解析试题分析:(1)对于取n=1,可得到的关系,即可证得;(2)当时,有,可得到的的关系式,从而可知等差数列的公差,又由构成等比数列,从而可求出基本量,即可写出其通项公式;(3)裂项:,以下用裂项相消法,即可化简题中左式,从而证得不等式.
试题解析:(1)当时,
(2)当时,,
时,是公差的等差数列.构成等比数列,,解得,由(1)可知,是首项,公差的等差数列.数列的通项公式为.
(3)
考点:数列中的关系:,等差数列的定义,等比中项,裂项相消求和法,特殊到一般思想,化归思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

设函数,是公差不为0的等差数列,,则          

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a2,b2,a3+2成等比数列,数列{bn}的前n项和为Sn
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若Sn+an>m对任意的正整数n恒成立,求常数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:=2,且成等比数列.
(1)求数列的通项公式.
(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列中,,且成等差数列.
(1)求
(2)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an+1+log2an(n=1,2,3,…),求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列{an}的前n项和为Sn,已知an + 1 = 2Sn + 2 (n∈N*).
(1)求数列{an}的通项公式;
(2)在an与an + 1之间插入n个数,使这n + 2个数组成一个公差为dn的等差数列.
①在数列{dn}中是否存在三项dm,dk,dp (其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;
②求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为
(1)求数列的通项公式;
(2)若,求数列的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,.
(1)求数列的通项公式;
(2)若数列的前项和,求的值.

查看答案和解析>>

同步练习册答案