精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

(1).证明:平面PAB⊥平面PAD;

(2).若PA=PD=AB=DC, ∠APD =90°,且四棱锥PABCD的体积为,求该四棱锥的侧面积.

【答案】(1) 见解析;(2) .

【解析】试题分析:

(1)由题意可得证得AB⊥平面PAD,然后结合面面垂直的判断定理即可证得平面PAB⊥平面PAD;

(2)由题意结合棱锥的结构特征分别求得底面积和侧面积,据此可得该四棱锥的侧面积是.

试题解析:

(1) ,

,,,平面,平面

平面

又∵平面∴平面平面

(2)由1得平面∴四边形为矩形

∴有

.

,

平面为四棱柱的高

,,

为等边三角形∴

∴四棱锥的侧面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

(1)能否由的把握认为参加书法社团和参加演讲社团有关?

(附:

时,有的把握说事件有关;当,认为事件是无关的)

(2)已知既参加书法社团又参加演讲社团的名同学中,有名男同学, 名女同学.现从这名男同学和名女同学中选人参加综合素质大赛,求被选中的男生人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1 (t为参数,t≠0),其中0≤απ.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2ρ2sin θC3ρ2cos θ.

(1)C2C3交点的直角坐标;

(2)C1C2相交于点AC1C3相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线y2x有一个相同的焦点,且该椭圆的离心率为.

(1)求椭圆的标准方程;

(2)过点P(0,1)的直线与该椭圆交于AB两点,O为坐标原点,若,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,不能证明APBC的条件是(  )

A. APPBAPPC

B. APPBBCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)通过()中的方程,求出y关于x的回归方程;

(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)求的单调区间;

3)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求曲线在点处的切线方程

2求证:存在唯一的,使得曲线在点处的切线的斜率为

3比较的大小并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“累积净化量()”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为时对颗粒物的累积净化量以克表示.根据《空气净化器》国家标准,对空气净化器的累计净化量(有如下等级划分:

累积净化量(克)

12以上

等级

为了了解一批空气净化器(共2000台)的质量,随机抽取台机器作为样本进行估计已知这台机器的累积净化量都分布在区间中.按照均匀分组其中累积净化量在所有数据有 ,并绘制了如下频率分布直方图:

1的值及频率分布直方图中的

2以样本估计总体,试估计这批空气净化器(共2000台)中等级为的空气净化器有多少台

3从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

同步练习册答案