精英家教网 > 高中数学 > 题目详情
已知正实数x,y满足x+y=1,若
1
x
+
a
y
的最小值为9,则正数a=
4
4
分析:把要求的式子
1
x
+
a
y
变形为 (x+y)(
1
x
+
a
y
),利用基本不等式即可得到
1
x
+
a
y
的最小值,列式即可求出a值.
解答:解:∵a>0,
1
x
+
a
y
=(
1
x
+
a
y
)(x+y)=1+a+
ax
y
+
y
x
≥a+1+2
a
=(
a
+1)2
当且仅当
ax
y
=
y
x
取等号,
则有(
a
+1)2=9
,解得a=4.
故答案为:4.
点评:本题考查基本不等式的应用,把要求的式子
1
x
+
a
y
变形为 (x+y)(
1
x
+
a
y
),是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正实数x,y满足等式[logy(1-
1
x
)+1]•[log(x+3)y]=1

(1)试将y表示为x的函数y=f(x),并求出定义域和值域.
(2)是否存在实数m,使得函数g(x)=mf(x)-
f(x)
+1有零点?若存在,求出m的取职范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数 x,y满足x+y=1,则
1
x
+
2
y
的最小值等于(  )
A、5
B、2
2
C、2+3
2
D、3+2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数x,y满足 x+y+xy=3,则 x+y 的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)已知正实数x,y满足等式x+y+8=xy,若对任意满足条件的x,y,都有不等式(x+y)2-a(x+y)+1≥0恒成立,则实数a的取值范围是
(-∞,
65
8
]
(-∞,
65
8
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数x,y满足
1
x
+
2
y
=1
,则x+2y的最小值为
9
9

查看答案和解析>>

同步练习册答案