精英家教网 > 高中数学 > 题目详情
1.等差数列{an}的前n项和为Sn,若a1000+a1018=2,则S2017=(  )
A.1008B.1009C.2016D.2017

分析 由等差数列的性质得a1+a2017=2由此能求出结果

解答 解:∵等差数列{an}的前n项和为Sn,a1000+a1018=2,
∴a1+a2017=2,
∴S2017=$\frac{2017}{2}$(a1+a2017)=2017.
故选:D

点评 本题考查等差数列的前2017项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.“数列{an}为等比数列”是“${a_{n+1}}^2={a_n}•{a_{n+2}}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={-1,3},试用列举法表示A+B;
(2)设a1=$\frac{2}{3}$,当n∈N*,且n≥2时,曲线$\frac{x^2}{{{n^2}-n+1}}+\frac{y^2}{1-n}=\frac{1}{9}$的焦距为an,如果A={a1,a2,…,an},B=$\{-\frac{1}{9},-\frac{2}{9},-\frac{2}{3}\}$,设A+B中的所有元素之和为Sn,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式Sm+Sn-λSk>0恒成立,求实数λ的最大值;
(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,平行四边形ABCD的两条对角线相交于点M,且$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,则$\overrightarrow{MD}$=(  )
A.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$B.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$C.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$D.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在正三棱柱ABC-A1B1C1中,若AB=$\sqrt{2}$BB1,则AB1与BC1所成角的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知{an}是等差数列,{bn}是等比数列,且b2=2,b3=4,a1=b1,a8=b4
(Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.顶点在原点,对称轴是坐标轴,且焦点在直线2x+y-2=0上的抛物线方程是y2=4x或x2=8y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A,B,若∠AOB=120°(O是坐标原点),则双曲线C的离心率为(  )
A.2B.3C.$\frac{1}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A={x|x≤7},B={x|x>2},则A∩B={x|2<x≤7}.

查看答案和解析>>

同步练习册答案