精英家教网 > 高中数学 > 题目详情
20.函数f(x)=x2+bx+c的两个零点关于x=1对称,则(  )
A.f(-1)<f(0)<f(4)B.f(-1)<f(4)<f(0)C.f(0)<f(-1)<f(4)D.f(0)<f(4)<f(-1)

分析 利用二次函数的性质,判断对称轴以及开口方向,然后判断函数值的大小.

解答 解:函数f(x)=x2+bx+c的开口向上,对称轴为x=1,
所以f(-1)>f(0),f(4)=f(-2)>f(-1).
所以f(0)<f(-1)<f(4).
故选:C.

点评 本题考查二次函数的性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图,l1,l2,l3是同一平面内的三条平行直线,l2,l3在l1的同侧.l1与l2的距离是d,l2与l3的距离是2d,边长为1的正三角形ABC的三个顶点分别在l1,l2,l3上,则d=$\frac{{\sqrt{21}}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.平面直角坐标系中有A(0,1),B(2,1),C(3,4),D(-1,2)两点
(1)求证:A,B,C,D四点共面;
(2)记(1)中的圆的圆心为M,直线l:2x-y-2=0与圆M相交于点P、Q,求弦长PQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.以三个向量所在线段为棱一定可以作一个平行六面体
B.设平行六面体的三条棱为$\overrightarrow{AB}$,$\overrightarrow{A{A}_{1}}$,$\overrightarrow{AD}$所在线段,则这一平行六面体的体对角线所对应的向量是$\overrightarrow{AB}$+$\overrightarrow{A{A}_{1}}$+$\overrightarrow{AD}$
C.若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{PA}$+$\overrightarrow{PB}$)成立,则点P一定是线段AB的中点
D.在空间中,若$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A,B,C,D四点共面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知两条直线l1:y=m和l2:y=$\frac{8}{2m+1}$(m>0),l1与函数y=|log2x|的图象从左到右相交于A、B,l2与函数y=|log2x|的图象从左到右相交于C、D,记线段AC和BD在x轴上的投影长度分别为a,b,当m变化时,$\frac{b}{a}$的最小值为(  )
A.16$\sqrt{2}$B.8$\sqrt{2}$C.8$\root{3}{4}$D.4$\root{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,PC⊥底面ABC,AB⊥BC,D是PC的中点.
(1)求证:平面ABD⊥平面PBC;
(2)若PA与平面ABC所成的角为30°,AB=BC,求二面角D-AB-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若二面角α-l-β的平面角为θ,a,β的法向量分别为$\overrightarrow{m}$,$\overrightarrow{n}$,则cosθ等于(  )
A.$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$B.$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}•\overrightarrow{n}|}$C.-$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,△ABC中,∠ABC=90°,∠C=30°,AB=1,D为AC中点,AE⊥BD于点E,延长AE交BC于点F,沿BD将△ABC折成四面体A-BCD.
(Ⅰ)若M是FC的中点,求证:DM∥平面AEF;
(Ⅱ)若cos∠AEF=$\frac{1}{3}$,求点D到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线f(x)=x3-2x.求:
(1)在点(1,-1)处的切线方程;
(2)过点(1,-1)的切线方程.

查看答案和解析>>

同步练习册答案