精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且满足2sinAcosB=sin(B+C).
(1)求角B的大小;
(2)设
m
=(sinA,1-2sin2A),
n
=(4k,1)(k∈R),且
m
n
的最大值是5,求k的值.
考点:平面向量数量积的运算,函数y=Asin(ωx+φ)的图象变换
专题:计算题,平面向量及应用
分析:(1)利用A+B+C=π,得出sin(B+C)=sinA,可求cosB=
1
2
,B=
π
3

(2)
m
n
=1-2sin2A+4ksinA=-2(sinA-k)2+2k2+1,注意到A∈(0,
3
)
,sinA∈(0,1],对k分类讨论求解.
解答: 解:(1)∵2sinAcosB=sin(B+C)∴2sinAcosB=sinA,而sinA>0,∴cosB=
1
2
,∴B=
π
3

(2)
m
n
=1-2sin2A+4ksinA=-2(sinA-k)2+2k2+1,
∵B=
π
3
.∴A∈(0,
3
)
,sinA∈(0,1].
①当k≥1时,当且仅当sinA=1时,(
m
n
min=4k-1=5,k=
3
2

②当0<k<1时,当且仅当sinA=k时,(
m
n
min=2k2+1=5,k=±
2
,均不合要求.
③当k<0时,无最大值.
综上所述,k=
3
2
点评:本题考查数量积的运算及其应用,三角函数知识的灵活运用,分类讨论的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P是△ABC内任意一点,S△ABC表示△ABC的面积,λ1=
S△PBC
S△ABC
,λ2=
S△PCA
S△ABC
,λ3=
S△PAB
S△ABC
,定义f(P)=( λ1,λ2,λ3),若G是△ABC的重心,f(Q)=(
1
6
1
3
1
2
),则(  )
A、点Q在△GAB内
B、点Q在△GBC内
C、点Q在△GCA内
D、点Q与点G重合

查看答案和解析>>

科目:高中数学 来源: 题型:

两个焦点的坐标分别为(-3,0),(3,0)的椭圆上的任一点到两焦点的距离之和为8,则椭圆的标准方程
为(  )
A、
x2
16
+
y2
9
=1
B、
x2
16
+
y2
7
=1
C、
x2
9
+
y2
16
=1
D、
x2
7
+
y2
16
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个数列中,如果对任意n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+…+a12=(  )
A、24B、28C、32D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线的两焦点坐标是F1(3,0),F2(-3,0),2b=4,则双曲线的标准方程是(  )
A、
x2
5
-
y2
4
=1
B、
y2
5
-
x2
4
=1
C、
x2
3
-
y2
2
=1
D、
x2
9
-
y2
16
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各函数的定义域
(1)y=
1
x-3
+
2x+1
 
(2)y=
(x-1)0
x+1
+
32x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx+k
ex
(k
为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是递减的等差数列,满足a3+a7=-6,a4•a6=8
(1)求数列{an}的通项公式;
(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1的两焦点,过F2作倾斜角为
π
4
的弦AB.
(1)求弦长|AB|;
(2)求三角形F1AB的面积.

查看答案和解析>>

同步练习册答案