精英家教网 > 高中数学 > 题目详情
在一个数列中,如果对任意n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+…+a12=(  )
A、24B、28C、32D、36
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:根据“等积数列”的概念,a1=1,a2=2,公积为8,可求得a3,a4,…a12,利用数列的求和公式即可求得答案.
解答: 解:依题意,数列{an}是等积数列,且a1=1,a2=2,公积为8,
∴a1•a2•a3=8,即1×2a3=8,
∴a3=4.
同理可求a4=1,a5=2,a6=4,…
∴{an}是以3为周期的数列,
∴a1=a4=a7=a10=1,
a2=a5=a8=a11=2,
a3=a6=a9=a12=4.
∴a1+a2+a3+…+a12=(1+2+4)×4=28.
故答案为:28.
点评:本题考查数列的求和,求得{an}是以3为周期的数列是关键,考查分析观察与运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中,假命题是(  )
A、?x∈R,3x-2>0
B、?x0∈R,tanx0=2
C、?x0∈R,lgx0<2
D、?x∈N*,(x-2)2>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=
4
5
,α∈(
2
,2π),则cos(α+
π
4
)=(  )
A、
2
10
B、
7
2
10
C、-
7
2
10
D、-
2
10

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,满足a=1,A=30°,B=45°,则b=(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若三个内角A,B,C成等差数列且A<B<C,则cosAcosC的取值范围是(  )
A、(-
1
2
1
4
]
B、[-
3
4
1
4
]
C、(-
1
2
1
4
D、(-
3
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
1+i
=1-ni,其中m、n是实数,i是虚数单位,则复数m+ni在复平面内所对应的点在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且满足2sinAcosB=sin(B+C).
(1)求角B的大小;
(2)设
m
=(sinA,1-2sin2A),
n
=(4k,1)(k∈R),且
m
n
的最大值是5,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥V-ABC中,VA=VB=AC=BC=2VC,∠ACB=120°.
(1)求证:AB⊥VC;
(2)求二面角V-AB-C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:“函数f(x)=2x+
a
2x
在区间[4,+∞)上递增”;命题Q:“g(x)=log2x-
a
log2x
在区间[4,+∞)上递增”.若命题p与命题Q有且仅有一个真,求实数a的集合.

查看答案和解析>>

同步练习册答案