精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别是角A,B,C的对边,满足a=1,A=30°,B=45°,则b=(  )
A、
2
B、
3
C、2
D、3
考点:正弦定理
专题:解三角形
分析:利用正弦定理和已知等式求得b的值.
解答: 解:由正弦定理知
a
sinA
=
b
sinB

∴b=
asinB
sinA
=
2
2
1
2
=
2

故选:A.
点评:本题主要考查了正弦定理的应用.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)为偶函数,且当x≥0时,f(x)=
x
-cosx,则f(x)的零点个数为(  )
A、4B、5C、6D、无穷多个

查看答案和解析>>

科目:高中数学 来源: 题型:

若O为三角形ABC所在平面内的一点,且满足(
OB
-
OC
)•(
OB
+
OC
-2
OA
)=0,则三角形ABC为(  )
A、正三角形B、直角三角形
C、等腰三角形D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

定义
.
a1a2
a3a4
.
=a1a4-a2a3,若函数f(x)=
.
sin2xcos2x
1
3
.
,则将f(x)的图象向右平移
π
3
个单位所得曲线的一条对称轴方程是(  )
A、x=
π
6
B、x=
π
4
C、x=
π
2
D、x=π

查看答案和解析>>

科目:高中数学 来源: 题型:

两个焦点的坐标分别为(-3,0),(3,0)的椭圆上的任一点到两焦点的距离之和为8,则椭圆的标准方程
为(  )
A、
x2
16
+
y2
9
=1
B、
x2
16
+
y2
7
=1
C、
x2
9
+
y2
16
=1
D、
x2
7
+
y2
16
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这50个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和处理框中的②处填上合适的语句,使之能完成该题算法功能(  )
A、i≤50;p=p+i
B、i<50;p=p+i
C、i≤50;p=p+1
D、i<50;p=p+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个数列中,如果对任意n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+…+a12=(  )
A、24B、28C、32D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各函数的定义域
(1)y=
1
x-3
+
2x+1
 
(2)y=
(x-1)0
x+1
+
32x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知sin(
7
2
π-α)=-
1
2
,求sin2
9
2
π-α)+cos(3π-α)的值;
(2)证明:
1-cos2α
1+cos2α
=tan2α.

查看答案和解析>>

同步练习册答案