精英家教网 > 高中数学 > 题目详情
设F1、F2是双曲线的两个焦点,P在双曲线上,且满足∠F1PF2=90°,则△PF1F2的面积是(    )
A.1B.C.2D.
A

试题分析:设|PF1|=x,|PF2|=y,根据根据双曲线性质可知x-y的值,再根据∠F1PF2=90°,求得x2+y2的值,进而根据2xy= -(x-y)求得xy,进而可求得∴△F1PF2的面积. 解:设|PF1|=x,|PF2|=y,(x>y),根据双曲线性质可知x-y=4,∵∠F1PF2=90°,∴,∴2xy=-(x-y)=4,∴xy=2,∴△F1PF2的面积为 =1,故选A
点评:本题主要考查了双曲线的简单性质.要灵活运用双曲线的定义及焦距、实轴、虚轴等之间的关
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆,左、右两个焦点分别为,上顶点为正三角形且周长为6.
(1)求椭圆的标准方程及离心率;
(2)为坐标原点,是直线上的一个动点,求的最小值,并求出此时点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与曲线的离心率互为倒数,则(  )
A.16B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

长为3的线段的端点分别在轴上移动,动点满足,则动点的轨迹方程是              

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在抛物线上,横坐标为的点到焦点的距离为,则的值为(   )
A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在坐标轴上的椭圆,它的离心率为,一个焦点和抛物线的焦点重合,过直线上一点引椭圆的两条切线,切点分别是.
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上的点处的椭圆的切线方程是. 求证:直线恒过定点;并出求定点的坐标.
(Ⅲ)是否存在实数,使得恒成立?(点为直线恒过的定点)若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与平面平行,P是直线上的一点,平面内的动点B满足:PB与直线。那么B点轨迹是                           
A.双曲线B.椭圆C.抛物线D.两直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的左右顶点分别是,点是双曲线上异于点的任意一点。若直线的斜率之积等于2,则该双曲线的离心率等于        

查看答案和解析>>

同步练习册答案