精英家教网 > 高中数学 > 题目详情
两直立矮墙成135°二面角,现利用这两面矮墙和篱笆围成一个面积为54m2的直角梯形菜园(墙足够长),则所用篱笆总长度的最小值为(  )
A、16m
B、18m
C、22.5m
D、15
3
m
考点:基本不等式
专题:不等式的解法及应用
分析:先设出BD=x,篱笆长度为y,进而分别表示出CD,AB,进而根据梯形面积公式建立等式,表示出y,利用基本不等式求得y的最小值.
解答:解:如图
设BD=x,设篱笆长度为y,则CD=y-x,AB=y-2x,
梯形的面积为
(y-2x+y-x)•x
2
=54,
整理得y=
54
x
+
3x
2
≥2
54×
3
2
=18,当
54
x
=
3
2
x,即x=6时等号成立,
所以篱笆总长度最小为18m.
故选:B.
点评:本题主要考查了基本不等式的应用.解题的关键时根据题意建立数学模型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,向量
OA
=(3sinα,cosα),
OB
=(2sinα,5sinα-4cosα),α∈(
2
,2π),且
OA
OB
,则tanα值为(  )
A、-
4
3
B、-
4
5
C、
4
5
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项为a1,公差为d,其前n项和为Sn,若直线y=
1
2
a1x+m与圆(x-2)2+y2=1的两个交点关于直线x+y-d=0对称,则数列{
1
Sn
}的前10项和=(  )
A、
9
10
B、
10
11
C、
8
9
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

一无穷等比数列{an}各项的和为
3
2
,第二项为
1
3
,则该数列的公比为(  )
A、
1
3
B、
2
3
C、-
1
3
D、
1
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y-5≤0
x-2y+1≤0
x-1≥0
,则z=x2+y2+2的最大值(  )
A、15B、17C、18D、19

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数y=sin4x是最小正周期为
π
2
的周期函数,命题q:函数y=tanx在(
π
2
,π)上单调递减,则下列命题为真命题的是(  )
A、p∧q
B、(¬p)∨q
C、(¬p)∧(¬q)
D、(¬p)∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?a>0,有ea≥1成立”,则¬p为(  )
A、?a≤0,有ea≤1成立B、?a≤0,有ea≥1成立C、?a>0,有ea<1成立D、?a>0,有ea≤1成立

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题是假命题的是(  )
A、?α,β∈R,使tan(α+β)=tanα+tanβ成立B、?α,β∈R,使cos(α+β)<cosα+cosβ成立C、△ABC中,“A<B”是“sinA<sinB”成立的充要条件D、?φ∈R,函数y=sin(2x+φ)都不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线C:
x2
a2
-
y2
b2
=1的右顶点做x轴的垂线,与C的一条渐近线相交于点A,若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为(  )
A、
x2
4
-
y2
12
=1
B、
x2
7
-
y2
9
=1
C、
x2
8
-
y2
8
=1
D、
x2
12
-
y2
4
=1

查看答案和解析>>

同步练习册答案