精英家教网 > 高中数学 > 题目详情
3.已知函数y=$\sqrt{(a-1){x^2}+ax+1}$的值域为[0,+∞),求a的取值范围为(  )
A.a≥1B.a>1C.a≤1D.a<1

分析 要使函数y=$\sqrt{(a-1){x^2}+ax+1}$的值域为[0,+∞),则(a-1)x2+ax+1能够取到大于0的所有实数,然后分二次项系数为0和不为0求解.

解答 解:要使函数y=$\sqrt{(a-1){x^2}+ax+1}$的值域为[0,+∞),
则(a-1)x2+ax+1能够取到大于0的所有实数.
若a-1=0,即a=1,函数化为y=$\sqrt{x+1}$,值域为[0,+∞);
若a-1≠0,则$\left\{\begin{array}{l}{a-1>0}\\{{a}^{2}-4(a-1)≥0}\end{array}\right.$,解得a>1.
综上,a的取值范围为a≥1.
故选:A.

点评 本题考查函数的概念及其构成要素,考查了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=sin\frac{x}{2}cos\frac{x}{2}+{cos^2}\frac{x}{2}-1$.
(1)求函数f(x)的最小正周期及单调递减区间;
(2)求函数f(x)的最值及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,正弦曲线f(x)=sinx和余弦曲线g(x)=cosx在矩形ABCD内交于点F,向矩形ABCD区域内随机投掷一点,则该点落在阴影区域内的概率是(  )
A.$\frac{1+\sqrt{2}}{π}$B.$\frac{1}{π}$C.$\frac{1+\sqrt{2}}{2π}$D.$\frac{1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x+2|-2|x-1|.
(1)解不等式f(x)≥-2;
(2)对任意x∈R,都有f(x)≤x-a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某中学高一年级从甲、乙两个班各选出7名学生参加国防知识竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x+y的值为(  )
A.8B.168C.9D.169

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a${\;}^{\frac{1}{2}}$-a${\;}^{-\frac{1}{2}}$=3,求:
①a+a-1
②a${\;}^{\frac{3}{2}}$-a${\;}^{-\frac{3}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果logx$\frac{1}{2}$<logy$\frac{1}{2}$<0,那么(  )
A.0<y<x<1B.1<y<xC.1<x<yD.0<x<y<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.甲乙两个班级均为40人,进行一门考试后,按学生成绩及格与不及格进行统计,甲班及格人数为36,乙班及格人数为24人,
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.5%的前提下认为“考试成绩与班级有关”?
(n=a+b+c+d)(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,)
P(K2≥k00.400.250.150.100.050.0250.0100.0050.001
k00.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某学生在上学路上要经过3个路口,假设在各路口是否遇到红灯时相互独立的,遇到红灯的概率都是$\frac{1}{3}$,遇到红灯时停留的时间都是1分钟,则这名学生在上学路上遇到红灯停留的总时间至多是2分钟的概率为(  )
A.$\frac{26}{27}$B.$\frac{8}{9}$C.$\frac{7}{9}$D.$\frac{23}{27}$

查看答案和解析>>

同步练习册答案