精英家教网 > 高中数学 > 题目详情
14.如图,正弦曲线f(x)=sinx和余弦曲线g(x)=cosx在矩形ABCD内交于点F,向矩形ABCD区域内随机投掷一点,则该点落在阴影区域内的概率是(  )
A.$\frac{1+\sqrt{2}}{π}$B.$\frac{1}{π}$C.$\frac{1+\sqrt{2}}{2π}$D.$\frac{1}{2π}$

分析 利用定积分计算公式,算出曲线y=sinx与y=cosx围成的区域包含在区域D内的图形面积为S=2π,再由定积分求出阴影部分的面积,利用几何概型公式加以计算即可得到所求概率.

解答 解:根据题意,可得曲线y=sinx与y=cosx围成的区域,
其面积为∫${\;}_{\frac{π}{4}}^{π}$(sinx-cosx)dx=(-cosx-sinx)|${\;}_{\frac{π}{4}}^{π}$=1+$\sqrt{2}$;
又矩形ABCD的面积为2π,
由几何概型概率公式得该点落在阴影区域内的概率是$\frac{1+\sqrt{2}}{2π}$.
故选:C.

点评 本题给出区域和正余弦曲线围成的区域,求点落入指定区域的概率.着重考查了定积分计算公式、定积分的几何意义和几何概型计算公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.我国是严重缺水的国家之一,某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较为合理地确定居民日常用水的标准,有关部门抽样调查了100位居民.如表是这100位居民月均用水量(单位:吨)的频率分布表,根据如表解答下列问题:
(1)求表中a,b的值;
分组频数频率
[0,1)100.10
[1,2)a0.20
[2,3)300.30
[3,4)20b
[4,5)100.10
[5,6)100.10
合计1001.00
(2)根据直方图估计该市每位居民月均用水量的众数、中位数、平均数.(在试卷上将下面的频率分布直方图补充完整).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知样本数为11,计算得$\sum_{i=1}^{11}{x_i}=66$,$\sum_{i=1}^{11}{y_i}=132$,回归方程为y=0.3x+a,则a=10.2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“|x-1|<2成立”是x(3-x)>0“成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{{\sqrt{3}}}{2}$cos2x+sin2(x+$\frac{π}{4}}$).
(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[-$\frac{π}{12}$,$\frac{5π}{12}}$)时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线2x-y-5=0且与圆x2+y2=5的位置关系是(  )
A..相切B..相离C.相交D.都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.tan$\frac{π}{3}$+cos$\frac{19}{6}$π=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=$\sqrt{(a-1){x^2}+ax+1}$的值域为[0,+∞),求a的取值范围为(  )
A.a≥1B.a>1C.a≤1D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直二面角E-AB-C中,四边形ABEF是矩形,AB=2,AF=2$\sqrt{3}$,△ABC是以A为直角顶点的等腰直角三角形,点P是线段BF上的一点,PF=3.
(Ⅰ)证明:BF⊥面PAC;
(Ⅱ)求二面角A-BC-P的余弦值.

查看答案和解析>>

同步练习册答案