| A. | $\frac{26}{27}$ | B. | $\frac{8}{9}$ | C. | $\frac{7}{9}$ | D. | $\frac{23}{27}$ |
分析 这名学生在上学路上遇到红灯停留的总时间至多是2分钟共包括三种情况,一是没有遇到红灯,二是遇到一次,三是遇到二次,分别求出三种情况的概率,然后代入互斥事件概率加法公式即可得到答案.
解答 解:设这名学生在上学路上因遇到红灯停留的总时间至多是2min为事件A,
这名学生在上学路上遇到k次红灯的事件Ak(k=0,1,2).则由题意,得:
P(A0)=( $\frac{2}{3}$)3=$\frac{8}{27}$,P(B1)=${C}_{3}^{1}(\frac{1}{3})^{2}×\frac{2}{3}=\frac{2}{9}$,P(B2)=${C}_{3}^{2}\frac{1}{3}×(\frac{2}{3})^{2}=\frac{4}{9}$.
由于事件A等价于“这名学生在上学路上至多遇到两次红灯”,
∴事件B的概率为P(B0)+P(B1)+P(B2)=$\frac{26}{27}$.
故选:A.
点评 本题以实际问题为载体,考查相互独立事件的概率,考查学生分析解决问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | a≥1 | B. | a>1 | C. | a≤1 | D. | a<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 单价x(元) | 18 | 19 | 20 | 21 | 22 |
| 销量y(册) | 61 | 50 | 50 | 48 | 45 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
| 昼夜温差x(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
| 就诊人数y(人) | 22 | 25 | 29 | 26 | 16 | 12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com