精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2x+sinx-1,(x∈R).
(Ⅰ)求f(
6
)的值;
(Ⅱ)当x∈[-
π
6
3
]时,求f(x)的取值范围.
考点:同角三角函数基本关系的运用,三角函数的最值
专题:三角函数的求值
分析:(Ⅰ)f(x)解析式利用同角三角函数间的基本关系化简,整理为二次函数的顶点形式,将x=
6
代入计算即可求出f(
6
)的值;
(Ⅱ)由x的范围求出sinx的范围,进而确定出f(x)的范围.
解答: 解:(Ⅰ)∵f(x)=cos2x+sinx-1=1-sin2x+sinx-1=-sin2x+sinx=-(sinx-
1
2
2+
1
4

∴f(
6
)=-(-
1
2
-
1
2
2+
1
4
=-
3
4

(Ⅱ)∵x∈[-
π
6
3
],∴sinx∈[-
1
2
,1],
∴sinx-
1
2
∈[-1,
1
2
],
∴(sinx-
1
2
2∈[0,1],
∴-(sinx-
1
2
2∈[-1,0],
即-(sinx-
1
2
2+
1
4
∈[-
3
4
1
4
],
则f(x)的取值范围为[-
3
4
1
4
].
点评:此题考查了同角三角函数基本关系的运用,以及正弦函数的值域,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设n=
π
2
0
6sinxdx,则二项式(x-
2
x
n的展开式中,x2项的系数为(  )
A、60B、75C、90D、120

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}中,其前n项和为Sn,且an=2
Sn
-1.
(1)求数列{an}的通项公式;
(2)设Tn是数列{
2
an
+
an+1
}的前n项和,Rn是数列{
a1a2…an
(a1+1)(a2+1)…(an+1)
}的前n项和,求证:Rn<Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=Acos(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示
(1)将函数g(x)的图象保持纵坐标不变,横坐标向右平移
π
3
个单位后得到函数f(x)的图象,求函数f(x)的最大值及最小正周期;
(2)求使f(x)≥2的x的取值范围的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意实数列A={a1,a2,a3…},定义△A={a2-a1,a3-a2,a4-a3,…},它的第n项为an+1-an(n∈N+),假设△A是首项是a公比为q的等比数列.
(Ⅰ)求数列△(△A)的前n项和Tn
(Ⅱ)若a1=1,a=2,q=2.
①求实数列A={a1,a2,a3…}的通项an
②证明:
n
2
-
1
3
a1
a2
+
a2
a3
+
a3
a4
+…+
an
an+1
n
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别为内角A、B、C的对边,且
c
a+b
+
b
a+c
=1,
(1)求角A的大小;
(2)若
c
b
=
2+
3
4
,a=
15
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx•cos(x-
π
6
)+cos2x-
1
2

(Ⅰ)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=
1
2
,b+c=3.求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x2+y2=2,设z=
1
x2
+
2y
x
,则z的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
sin4x
-1)(
1
cos4x
-1),则函数f(x)的最小值为
 

查看答案和解析>>

同步练习册答案