精英家教网 > 高中数学 > 题目详情
在△ABC中,a、b、c分别为内角A、B、C的对边,且
c
a+b
+
b
a+c
=1,
(1)求角A的大小;
(2)若
c
b
=
2+
3
4
,a=
15
,求b的值.
考点:正弦定理,余弦定理
专题:计算题,三角函数的求值
分析:(1)把已知等式化简整理,并利用余弦定理可取的cosA的值,进而求得A的值.
(2)根据b,c的比例关系设出b,c的值,进而根据余弦定理建立方程求得t,最后求得b.
解答: 解:(1)∵且
c
a+b
+
b
a+c
=1,
∴a2+ab+ac+bc=c2+ac+b2+ab
∴b2+c2-a2=bc
∴2bccosA=ab
∴cosA=
1
2

∵0°<∠A<180°
∴∠A=60°
(2)∵
c
b
=
2+
3
4

∴令b=4t,c=(2+
3
)t,
cosA=
b2+c2-a2
2bc
=
16t2+(7+4
3
)t2-15
8(2+
3
)t2
=
1
2

解得t=1
∴b=4.
点评:本题主要考查了余弦定理的运用.在解三角形的过程中往往借助正弦定理、余弦定理转换边和角的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在四棱锥P-ABCD中,AD∥BC,AD⊥CD,PA=PD=AD=2BC=2CD,E,F分别是AD,PC的中点.
(Ⅰ)求证AD⊥平面PBC;
(Ⅱ)若PB=AD,求二面角F-BE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在圆柱OO1中,ABCD是其轴截面,EF⊥CD于O1(如图所示),若AB=2,BC=
2


(Ⅰ)设平面BEF与⊙O所在平面的交线为l,平面ABE与⊙O1所在平面的交线为m,证明:l⊥m;
(Ⅱ)将△AEC绕直线AD旋转一周,求所得几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b,乙从区间[0,1]上随机等可能地抽取一个实数记为c(b,c可以相等),若关于x的方程x2+2bx+c=0有实根,则甲获胜,否则乙获胜.
(Ⅰ)求一场比赛中甲获胜的概率;
(Ⅱ)设n场比赛中,甲恰好获胜k场的概率为Pnk,求
n
k=0
k
n
Pnk
的值.
(Ⅲ)若n=8时,k为何值时,Pnk取到最大值.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+sinx-1,(x∈R).
(Ⅰ)求f(
6
)的值;
(Ⅱ)当x∈[-
π
6
3
]时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-
2
5x+1

(1)判断函数f(x)的奇偶性,并说明理由;
(2)若af(x)≥1对x∈[1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

我校为了了解学生的早餐费用情况,抽样调查了100名学生的早餐平均费用(单位:元),得如图所示的频率分布直方图,图中标注数字a模糊不清.

(1)试根据频率分布直方图求a的值,并求我校学生早餐平均费用的众数;
(2)已知我校有1000名学生,试估计我校有多少学生早餐平均费用不多于6元?

查看答案和解析>>

科目:高中数学 来源: 题型:

凉山州民族中学高一、高二、高三的学生人数之比为4:4:5,现用分层抽样法从该校的高中三个年级的学生中抽取容量为65的样本,则应从高一年级抽取的学生人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=5x+
20
x2
(x>0)的最小值为
 

查看答案和解析>>

同步练习册答案