| A. | 2 | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
分析 根据y=Asin(ωx+φ)的图象变换规律,可得sin(ωx+$\frac{ωπ}{3}$-$\frac{π}{6}$]=cosωx,再利用诱导公式求得ω的一个可能取值.
解答 解:把函数y=sin(ωx-$\frac{π}{6}$)的图象向左平移$\frac{π}{3}$个单位,
得到y=sin[ω(x+$\frac{π}{3}$)-$\frac{π}{6}$]=sin(ωx+$\frac{ωπ}{3}$-$\frac{π}{6}$]的图象,
再根据所得到的图象与函数y=cosωx的图象重合,
可得sin(ωx+$\frac{ωπ}{3}$-$\frac{π}{6}$]=cosωx,故 $\frac{ωπ}{3}$-$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,
即ω=6k+2,则ω的一个可能取值是2,
故选:A.
点评 本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5$\sqrt{2}$ | B. | 5 | C. | $\frac{5\sqrt{2}}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com