【题目】已知函数
.
(1)若
,求
的单调区间;
(2)若关于
的方程
有四个不同的解
,求实数
应满足的条件;
(3)在(2)条件下,若
成等比数列,用
表示t.
【答案】(1)
在
单调递增,在
单调递减;(2)
;(3)
.
【解析】
(1)将
代入,用分类讨论的去掉绝对值符号后结合函数单调性性质得解;
(2)用分类讨论的去掉绝对值符号得分段函数,然后用导数研究函数的单调性,求出满足条件的
的关系;
(3)由韦达定理得
两两互为倒数,结合等比数列性质及韦达定理可用
表示出
.
(1)
时,
,
易知在
时,
是增函数,
是减函数,
所以
的单调增区间
,单调减区间是
.
(2)
,
,
当
时,![]()
在
是递增,在
上递减,不合题意;
当
时,
时,由
得
,
在
上单调递减,在
是单调递增,
时,由
得
,
在
上单调递减,在
是单调递增,
又
,
,
∴实数
应满足的条件是
.
(3)
,即
或
,
即
或
,
在
中用
代换
得
,即
,
∴方程
与方程
的根互为倒数.
设这四个根从小到大依次为
,则
,
所以
,
若
成等比数列,则
,
,
,
.
∴
,
,
,
∴
,
∴
.
科目:高中数学 来源: 题型:
【题目】王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的
网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)
网络 | 月租费 | 本地话费 | 长途话费 |
甲:联通 |
|
|
|
乙:移动“神州行” | 无 |
|
|
若王先生每月拨打本地电话的时间是拨打长途电话时间的
倍,若要用联通
应最少打多长时间的长途电话才合算.( )
A.
秒B.
秒C.
秒D.
秒
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高铁、移动支付、网购与共享单车被称为中国的新四大发明,为了解永安共享单车在淮南市的使用情况,永安公司调查了100辆共享单车每天使用时间的情况,得到了如图所示的频率分布直方图.
![]()
(Ⅰ)求图中
的值;
(Ⅱ)现在用分层抽样的方法从前3组中随机抽取8辆永安共享单车,将该样本看成一个总体,从中随机抽取2辆,求其中恰有1辆的使用时间不低于50分钟的概率;
(Ⅲ)为进一步了解淮南市对永安共享单车的使用情况,永安公司随机抽取了200人进行调查问卷分析,得到如下2×2列联表:
经常使用 | 偶尔使用或不用 | 合计 | |
男性 | 50 | 100 | |
女性 | 40 | ||
合计 | 200 |
完成上述2×2列联表,并根据表中的数据判断是否有85%的把握认为淮南市使用永安共享单车的情况与性别有关?
附:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系
中,倾斜角为
的直线l过点
,以原点
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出直线
的参数方程(
为常数)和曲线
的直角坐标方程;
(2)若直线
与
交于
,
两点,且
,求倾斜角
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人同时参加一次数学测试,共有
道选择题,每题均有
个选项,答对得
分,答错或不答得
分.甲和乙都解答了所有的试题,经比较,他们只有
道题的选项不同,如果甲最终的得分为
分,那么乙的所有可能的得分值组成的集合为____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】地震波分为纵波和横波,纵波传播快,破坏性弱;横波传播慢,破坏性强.地震预警是指在地震发生后,利用地震波传播速度小于电波传播速度的特点,地震发生地提前对地震波尚未到达的地方进行预警.通过地震预警能在地震到达之前,为民众争取到更多逃生时间.2019年6月17日22时55分四川省宜宾市长宁县发生6.0级地震,震源深度约16千米,震中长宁县探测到纵波后4秒内通过电波向成都等地发出地震警报.已知纵波传播速度约为5.5~7千米/秒,横波传播速度约为3.2~4千米/秒,长宁县距成都约261千米,则成都预警时间(电波与横波到达的时间差)可能为( )
A.51秒B.56秒C.61秒D.80秒
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为数列
的前n项和, 且满足
为常数
.
(1)若
,求
的值;
(2)是否存在实数
,使得数列
为等差数列?若存在,求出
的值;若不存在,请说明理由;
(3)当
时,若数列
满足
,且
,令
,求数列
的前n项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线
的焦点重合.
(1)求椭圆
的方程;
(2)斜率为
的直线过点
,且与抛物线
交于
两点,设点
,
的面积为
,求
的值;
(3)若直线
过点![]()
,且与椭圆
交于
两点,点
关于
轴的对称点为
,直线
的纵截距为
,证明:
为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com