精英家教网 > 高中数学 > 题目详情
已知
a
=(1,2)
b
=(0,1)
c
=(k,-2)
,若(
a
+2
b
)⊥
c
,则实数k=
 
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:由向量的加减运算和数乘,运用向量垂直的条件:数量积为0,计算即可得到.
解答: 解:
a
=(1,2)
b
=(0,1)
c
=(k,-2)

a
+2
b
=(1,4)

(
a
+2
b
)⊥
c
,则(
a
+2
b
)•
c
=0,
即有k-8=0
解得,k=8.
故答案为:8.
点评:本题考查向量的数量积的定义和性质,考查向量垂直的条件,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|-3<x≤5},B={x|m+1≤x≤2m-1},满足B⊆A,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题;
①当?x>1时,lgx+
1
lgx
≥2;
②m+1>n是m>n成立的充分不必要条件;
③函数y=ax的图象可以由函数y=4ax(其中a>0且a≠1)平移得到;
④对于任意△ABC角A,B,C满足:sin2A=sin2B+sin2C-2sinBsinCcosA;
⑤定义:如果对任意一个三角形,只要它的三边长a,b,c都在函数y=f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称y=f(x)为“三角形型函数”.函数h(x)=lnx,x∈[2,+∞)是“三角形型函数”.
其中正确命题的序吗为
 
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

观察等式:
1
3
×13+
1
2
×12+
1
6
×1=12
1
3
×23+
1
2
×22+
1
6
×2=12+22
1
3
×33+
1
2
×32+
1
6
×3=12+22+32,…
以上等式都是成立的,照此写下去,第2015个成立的等式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出数表:请在其中找出5个不同的数,使它们由小到大能构成等比数列,则这5个数依次可以说是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|x2-2≤0},则下列关系正确的是(  )
A、0⊆MB、0∉M
C、0∈MD、2∈M

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(ωx+
π
6
)(ω>0)
图象的两条相邻的对称轴之间的距离为
π
2
,且该函数图象关于点(x0,0)成中心对称,x0∈[0,
π
2
]
,则x0=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(6n-2)2+(2m-2)2
2
5
,求m+n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域(0,+∞),若y=
f(x)
x
在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=
f(x)
x2
在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.把所有由“一阶比增函数”组成的集合记为A1,把所有由“二阶比增函数”组成的集合记为A2
(1)已知函数f(x)=x3-2hx2-hx,若f(x)∈A1且f(x)∉A2,求实数h的取值范围
(2)已知f(x)∈A2,且存在常数k,使得对任意的x∈(0,+∞),都有f(x)<k,求k的最小值.

查看答案和解析>>

同步练习册答案