精英家教网 > 高中数学 > 题目详情
如图,正方形所在的平面与正方形所在的平面相互垂直,分别是的中点.
 
(1)求证:面
(2)求直线与平面所成的角正弦值.
(1)详见解析;(2).

试题分析:(1)采用思路:线线垂直推出线面垂直,然后推出面面垂直;(2)利用定义法通过添加辅助线确定直线与平面所成的角,然后通过解三角形求解其值.
试题解析:(1)∵为正方形,∴
为正方形,∴,∴.  3分
,∴.
,∴面.        6分

(Ⅱ)作上的射影,连. 7′
,∴面
∴面,∴
与面所成的角.           9分
上的射影,连.
,则.


∴直线与平面所成的角的正弦值为.                   12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(如图1)在平面四边形中,中点,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.

(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.

(1)求证:四边形为平行四边形;
(2)试在直线AC上找一点F,使得.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)如图,棱锥的底面是矩形,⊥平面

(1)求证:⊥平面
(2)求二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)如图,在四棱锥中,底面是矩形,平面与平面所成角的正切值依次是依次是的中点.
(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的面面积与底面面积间的关系。可以得出的正确结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两相互垂直,则                                       ”.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱柱中,所成角均为,且,则三棱锥的体积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

单位正方体在一个平面内的投影面积的最大值和最小值分别为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线∥平面,直线,则的位置关系是           (  )
A.B.异面
C.相交D.没有公共点

查看答案和解析>>

同步练习册答案