精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x(a+lnx)有极小值-e-2
(Ⅰ)求实数a的值;
(Ⅱ)若k∈Z,且k<
f(x)x-1
对任意x>1恒成立,求k的最大值.
分析:(Ⅰ)求函数的定义域,利用极小值-e-2,求实数a的值;
(Ⅱ)利用导数求函数的最值即可.
解答:解:(Ⅰ)因为函数的定义域为(0,+∞),
函数的导数为f'(x)=1+a+lnx,由f'(x)=1+a+lnx=0,
解得x=e-1-a,即当x=e-1-a,时,函数取得极小值-e-2
即f(e-1-a)=e-1-a(a-1-a)=-e-1-a=-e-2
所以解的a=1,即实数a的值为1.
(Ⅱ)当a=1时,f(x)=x(1+lnx),所以设g(x)=
f(x)
x-1
=
x+xlnx
x-1

g′(x)=
x-2-lnx
(x-1)2

令h(x)=x-2-lnx,x>1.
因为h′(x)=1-
1
x
=
x-1
x
>0
,所以函数h(x)在(1,+∞)上单调递增,
又h(3)=1-ln3<0,h(4)=2-ln4=2-2ln2>0,
所以h(x)在(1,+∞)上存在唯一的一个实数根x0,满足x0∈(3,4),且h(x0)=0
,即x0-2-ln?x0=0,所以lnx0=x0-2.
当x∈(1,x0)时,h(x)<0,此时g'(x)<0,
当x∈(x0,+∞)时,h(x)>0,此时g'(x)>0.
所以g′(x)=
x-2-lnx
(x-1)2
在x∈(1,x0)时,单调递减,在x∈(x0,+∞)上单调递增,
所以.g(x)min=g(x0)=
x0+x0lnx0
x0-1
=
x0+x0(x0-2)
x0-1
=
x0(x0-1)
x0-1
=x0
∈(3,4).
所以要使k<
f(x)
x-1
对任意x>1恒成立,则k<g(x)min?=x0∈(3,4),
因为k∈Z,所以要k≤3,即k的最大值为3.
点评:本题主要考查了函数的极值和导数之间的关系,以及根的存在性定理的应用,综合性较强,运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案