精英家教网 > 高中数学 > 题目详情
已知f(x)=ln(x+2)-x2+bx+c.
(Ⅰ)若函数f(x)在x=1处的切线与直线3x+7y+2=0垂直,且f(-1)=0,求函数f(x)的解析式;
(Ⅱ)若f(x)在区间[0,2]上单调递减,求b的取值范围.
分析:(Ⅰ)先求导函数,然后根据题意可得f(1)=
7
3
,而f(-1)=0,建立方程组,可求出b与c的值,即可求出所求;
(Ⅱ)先求导函数,设g(x)=-2x2-(4-b)x+2b+1,因为△>0恒成立,故g(x)=0必有两根,根据f(x)在区间[0,2]上单调递减,则g(x)在[0,2]上值恒非正,建立关系式,可求出b的取值范围.
解答:解:(Ⅰ)f(x)=
1
x+2
-2x+b

∵函数f(x)在x=1处的切线与直线3x+7y+2=0垂直
f(1)=
7
3
,而f(-1)=0得b=4,c=5.
所以f(x)=ln(x+2)-x2+4x+5.…(6分)
(Ⅱ)f(x)=
1
x+2
-2x+b=
-2x2-(4-b)x+2b+1
x+2
(x>-2)
,…(8分)
设g(x)=-2x2-(4-b)x+2b+1,
因为△>0恒成立,故g(x)=0必有两根.
∵f(x)在区间[0,2]上单调递减,
∴g(x)在[0,2]上值恒非正,
-
-(4-b)
2•(-2)
≤0
g(0)≤0
-
-(4-b)
2•(-2)
≥2
g(2)≤0
解得b≤-
1
2

故当b≤-
1
2
时,f(x)在[0,2]上单调递减.…(12分)
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数单调性,同时考查了转化的思想和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
x1+ax
(a>0).
(I) 若f(x)在(0,+∞)内为单调增函数,求a的取值范围;
(II) 若函数f(x)在x=O处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)对于(I)中的函数f(x)有下列性质:“若x∈[a,b],则存在x0(a,b)使得
f(b)-f(a)
b-a
=f′(x0)”成立.利用这个性质证明x0唯一;
(Ⅲ)设A、B、C是函数f(x)=ln(1+ex)-x(x∈R)图象上三个不同的点,求证:△ABC是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1).
(1)若g(x)=
1
4
x2-x+f(x)
,求g(x)在[0,2]上的最大值与最小值;
(2)当x>0时,求证
1
1+x
<f(
1
x
)<
1
x

(3)当n∈N+且n≥2时,求证:
1
2
+
1
3
+
1
4
+…+
1
n+1
<f(n)<1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1)-ax(a∈R)
(1)当a=1时,求f(x)在定义域上的最大值;
(2)已知y=f(x)在x∈[1,+∞)上恒有f(x)<0,求a的取值范围;
(3)求证:
12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
14
x2 是定义在[0,2]上的函数
(1)求函数f(x)的单调区间
(2)若f(x)≥c对定义域内的x恒成立,求c的取值范围..

查看答案和解析>>

同步练习册答案