·ÖÎö £¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È+4sin¦È-¦Ñ=0£¬¿ÉµÃ¦Ñ2sin2¦È+4¦Ñsin¦È-¦Ñ2=0£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®ÓÉÖ±ÏßlµÄ²ÎÊý·½³Ì£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£®
£¨2£©Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢»¯Îª£ºx2-4x-4=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°Æä|MN|=$\sqrt{2[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È+4sin¦È-¦Ñ=0£¬
¿ÉµÃ¦Ñ2sin2¦È+4¦Ñsin¦È-¦Ñ2=0£¬
¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºy2+4y-£¨x2+y2£©=0£¬¼´x2=4y£®
Ö±Ïßl£º$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£ºy=x+1£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=x+1}\end{array}\right.$£¬»¯Îª£ºx2-4x-4=0£¬
¡à|MN|=$\sqrt{2[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2¡Á[{4}^{2}-4¡Á£¨-4£©]}$=8£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨¡¢²ÎÊý·½³Ì¼°ÆäÓ¦Óá¢ÏÒ³¤¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $£¨0£¬\;\;\frac{1}{4}]$ | B£® | $£¨0£¬\;\;\frac{1}{2}]$ | C£® | £¨0£¬1£© | D£® | £¨0£¬2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬-1£© | B£® | [1£¬+¡Þ£© | C£® | £¨1£¬+¡Þ£© | D£® | £¨-¡Þ£¬1] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com