16£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÈôÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È+4sin¦È-¦Ñ=0£¬Ö±Ïßl£º$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏßC½»ÓÚM£¬NÁ½µã£®
£¨1£©Ð´³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì¼°Ö±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Çó|MN|£®

·ÖÎö £¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È+4sin¦È-¦Ñ=0£¬¿ÉµÃ¦Ñ2sin2¦È+4¦Ñsin¦È-¦Ñ2=0£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®ÓÉÖ±ÏßlµÄ²ÎÊý·½³Ì£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£®
£¨2£©Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢»¯Îª£ºx2-4x-4=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°Æä|MN|=$\sqrt{2[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È+4sin¦È-¦Ñ=0£¬
¿ÉµÃ¦Ñ2sin2¦È+4¦Ñsin¦È-¦Ñ2=0£¬
¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºy2+4y-£¨x2+y2£©=0£¬¼´x2=4y£®
Ö±Ïßl£º$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£ºy=x+1£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=x+1}\end{array}\right.$£¬»¯Îª£ºx2-4x-4=0£¬
¡à|MN|=$\sqrt{2[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2¡Á[{4}^{2}-4¡Á£¨-4£©]}$=8£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨¡¢²ÎÊý·½³Ì¼°ÆäÓ¦Óá¢ÏÒ³¤¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýf£¨x£©Âú×ãf£¨x+2£©=f£¨x£©£¬ÇÒf£¨x£©ÊÇżº¯Êý£¬µ±x¡Ê[0£¬1]ʱ£¬f£¨x£©=x2£¬ÈôÔÚÇø¼ä[-1£¬3]ÄÚ£¬º¯Êýg£¨x£©=f£¨x£©-kx-kÓÐ4¸öÁãµã£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨0£¬\;\;\frac{1}{4}]$B£®$£¨0£¬\;\;\frac{1}{2}]$C£®£¨0£¬1£©D£®£¨0£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÇóÏÂÁк¯ÊýµÄ·´º¯Êý
£¨1£©y=$\root{3}{3x-5}$£»£¨2£©y=$\frac{1}{2}$£¨ex-e-x£©£»£¨3£©y=1+ln£¨x-1£©£»£¨4£©y=2sin$\frac{x}{3}$£¬x¡Ê[-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC£º$\left\{\begin{array}{l}x=4cos¦È\\ y=3sin¦È\end{array}$£¨¦ÈΪ²ÎÊý£¬¦È¡ÊR£©£¬Ö±Ïßl£º$\left\{\begin{array}{l}x=3+\frac{\sqrt{2}}{2}t\\ y=-3+\frac{\sqrt{2}}{2}t\end{array}$£¨tΪ²ÎÊý£¬t¡ÊR£©£¬ÇóÇúÏßCÉϵ͝µãPµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Âú×ãSn=2an-n
£¨1£©ÇóÖ¤ÊýÁÐ{an+1}ÊǵȱÈÊýÁв¢Çó{an}µÄͨÏʽ
£¨2£©Éèbn=£¨2n+1£©£¨an+1£©£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èôº¯Êýy=f£¨x£©µÄ¶¨ÒåÓòÊÇ[0£¬2]£¬Ôòº¯Êýg£¨x£©=$\frac{f£¨2x£©}{{{{log}_3}£¨{2^x}+1£©}}$µÄ¶¨ÒåÓòΪ[0£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÉèÈ«¼¯ÎªR£¬º¯Êýf£¨x£©=$\sqrt{1-x}$µÄ¶¨ÒåÓòΪM£¬Ôò∁RM=£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-1£©B£®[1£¬+¡Þ£©C£®£¨1£¬+¡Þ£©D£®£¨-¡Þ£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýy=4x-6¡Á2x+8£¬Çó¸Ãº¯ÊýµÄ×îСֵ£¬¼°È¡µÃ×îСֵʱxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{lgx£¬x£¾0}\\{{x}^{-2}£¬x£¼0}\end{array}\right.$£¬Èôf£¨x0£©=1£¬Ôòx0µÄÖµÊÇ10£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸