精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系xOy中,已知曲线C:$\left\{\begin{array}{l}x=4cosθ\\ y=3sinθ\end{array}$(θ为参数,θ∈R),直线l:$\left\{\begin{array}{l}x=3+\frac{\sqrt{2}}{2}t\\ y=-3+\frac{\sqrt{2}}{2}t\end{array}$(t为参数,t∈R),求曲线C上的动点P到直线l的距离的最小值.

分析 根据已知中直线的参数方程,消参求出直线的一般式方程,代入点到直线距离公式,结合三角函数的图象和性质,可得曲线C上的动点P到直线l的距离的最小值.

解答 解:将直线l的参数方程$\left\{\begin{array}{l}x=3+\frac{\sqrt{2}}{2}t\\ y=-3+\frac{\sqrt{2}}{2}t\end{array}$(t为参数,t∈R),
化为普通方程为x-y-6=0.
因为点P在曲线C:$\left\{\begin{array}{l}x=4cosθ\\ y=3sinθ\end{array}$(θ为参数)上,所以设P(4cosθ,3sinθ).
点P到直线l的距离d=$\frac{|4cosθ-3sinθ-6|}{\sqrt{2}}$=$\frac{|5cos(θ+ϕ)-6|}{\sqrt{2}}$,其中tanφ=$\frac{3}{4}$,φ是锐角.
所以当cos(θ+φ)=1时,dmin=$\frac{\sqrt{2}}{2}$.
所以点P到直线l的距离的最小值为$\frac{\sqrt{2}}{2}$.…10分.

点评 本题考查的知识点是直线与椭圆的位置关系,参数方程与普通方程的互化,三角函数的最值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F分别是CC1,BC的中点.
(Ⅰ)求证:B1F⊥平面AEF;
(Ⅱ)求三棱锥E-AB1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)•cos(x+$\frac{π}{4}$)-sin(2x+π).
(Ⅰ) 求f的(x)的最小正周期;
(Ⅱ)若将f(x)的图象向右平移$\frac{π}{12}$个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.y=(m2-2m+2)x2m+1是一个幂函数,则m=(  )
A.-1B.1C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在正方形ABCD中,点E是DC的中点,点F是BC的一个三等分点,那么$\overrightarrow{EF}$=$\frac{1}{2}\overrightarrow{AB}$$-\frac{2}{3}\overrightarrow{AD}$(用$\overrightarrow{AB}$和$\overrightarrow{AD}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设Sn是等比数列{an}的前n项的和,若a3+2a6=0,则$\frac{S_3}{S_6}$的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C的极坐标方程为ρsin2θ+4sinθ-ρ=0,直线l:$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)与曲线C交于M,N两点.
(1)写出曲线C的直角坐标方程及直线l的普通方程;
(2)求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)log232-log2$\frac{3}{4}$+log26
(2)8${\;}^{\frac{2}{3}}$×(-$\frac{7}{6}$)0+($\root{3}{2}$×$\sqrt{3}$)6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为(  )
A.588B.480C.450D.120

查看答案和解析>>

同步练习册答案