分析 (Ⅰ)证明AF⊥B1F,B1F⊥EF,然后证明B1F⊥平面AEF;
(Ⅱ)由(Ⅰ)知,B1F⊥平面AEF,然后利用等积法求得三棱锥E-AB1F的体积.
解答 (Ⅰ)证明:由条件知AF⊥平面CCBB1,∴AF⊥B1F,![]()
由∠BAC=90°,且AB=AA1=1,得${B}_{1}F=\frac{\sqrt{6}}{2}$,EF=$\frac{\sqrt{3}}{2}$,${B}_{1}E=\frac{3}{2}$,
∴${B}_{1}{E}^{2}={B}_{1}{F}^{2}+E{F}^{2}$,即B1F⊥EF,又∵EF∩AF=F,
∴B1F⊥平面AEF;
(Ⅱ)解:由已知可得,AF=$\frac{\sqrt{2}}{2}$,且由(Ⅰ)知AF⊥FE,
∴${S}_{△AFE}=\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}=\frac{\sqrt{6}}{8}$,
∴${V}_{E-A{B}_{1}F}={V}_{{B}_{1}-AEF}=\frac{1}{3}×\frac{\sqrt{6}}{8}×\frac{\sqrt{6}}{2}=\frac{1}{8}$.
点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\;\;\frac{1}{4}]$ | B. | $(0,\;\;\frac{1}{2}]$ | C. | (0,1) | D. | (0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x<y<z | B. | z<x<y | C. | z<y<x | D. | y<z<x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com