精英家教网 > 高中数学 > 题目详情
9.已知{an}是各项不为零的等差数列,其中a1>0,公差d<0,若S10=0,则数列{an}前n项和取最大值时n=5.

分析 利用等差数列的求和公式可得a5+a6=0,结合已知可得a5>0,a6<0,即可得解.

解答 解:∵${S_{10}}=\frac{{10({a_1}+{a_{10}})}}{2}=5({a_5}+{a_6})=0$,可得:a5+a6=0,
∴a5>0,a6<0,即数列{an}前5项和为最大值,
∴n=5.
故答案为:5.

点评 本题主要考查了等差数列的求和公式,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)已知${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}=3$,求$\frac{{{a^2}+{a^{-\;2}}+1}}{{a+{a^{-\;1}}-1}}$的值.
(2)计算$\sqrt{(1-\sqrt{2}{)^2}}+{2^{-2}}×{(\frac{9}{16})^{-0.5}}+{2^{{{log}_2}3}}-(lg8+lg125)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log4(2x+3-x2).
(1)求f(x)的定义域及单调区间;
(2)求f(x)的最大值,并求出取得最大值时x的值;
(3)设函数g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某校高一、高二、高三年级学生人数分别为550,500,450.为了了解教师的教学情况,学校教科室采用分层抽样的方法从这三个年级中抽取30名学生进行座谈,则从高二年级应抽取的学生人数是10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l过点P(1,2),斜率k=2
(1)写出直线l的方程;   
(2)判断点A(1,-2)是否在直线l上?
(3)直线n过点B(2,9)且平行于直线l,求直线n的方程;
(4)求直线l与直线n的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F分别是CC1,BC的中点.
(Ⅰ)求证:B1F⊥平面AEF;
(Ⅱ)求三棱锥E-AB1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U=R,函数y=$\sqrt{x-2}$+$\sqrt{x+1}$的定义域为集合A,函数y=$\frac{\sqrt{2x+4}}{x-3}$的定义域为集合B.则集合(∁UA)∩(∁UB)={x|x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)满足f(-x)=-f(x),且当x>0时,f(x)=x|x-2|,则当x<0时,f(x)的表达式为(  )
A.f(x)=x|x+2|B.f(x)=x|x-2|C.f(x)=-x|x+2|D.f(x)=-x|x-2|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在正方形ABCD中,点E是DC的中点,点F是BC的一个三等分点,那么$\overrightarrow{EF}$=$\frac{1}{2}\overrightarrow{AB}$$-\frac{2}{3}\overrightarrow{AD}$(用$\overrightarrow{AB}$和$\overrightarrow{AD}$表示)

查看答案和解析>>

同步练习册答案