精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{{x}^{-2},x<0}\end{array}\right.$,若f(x0)=1,则x0的值是10.

分析 当x0>0时,f(x0)=lgx0=1,;当x0<0时,$f({x}_{0})={{x}_{0}}^{-2}=1$.由此能求出x0的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{{x}^{-2},x<0}\end{array}\right.$,f(x0)=1,
∴当x0>0时,f(x0)=lgx0=1,解得x0=10;
当x0<0时,$f({x}_{0})={{x}_{0}}^{-2}=1$,解得x0=1,不成立.
综上,x0=10.
∴x0的值是10.
故答案为:10.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C的极坐标方程为ρsin2θ+4sinθ-ρ=0,直线l:$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)与曲线C交于M,N两点.
(1)写出曲线C的直角坐标方程及直线l的普通方程;
(2)求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知p:?x∈R,cos2x-sinx+2≤m;q:函数$f(x)={({\frac{1}{3}})^{2{x^2}-mx+2}}$在[1,+∞)上单调递减.
( I)若p∧q为真命题,求m的取值范围;
( II)若p∨q为真命题,p∧q为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为(  )
A.588B.480C.450D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=2x3-6x2+11的单调减区间是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={0,1,2},B={y|y=2x,x∈A},则A∩B={0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合$A=\left\{{\left|{\frac{x-2}{2x-1}>}\right.0}\right\}$,B={x|bx<1},若A∪B=R,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{3x-1,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则满足f[f(a)]=2f(a)的a的取值范围是(  )
A.[$\frac{2}{3}$,1]B.[0,1]C.[$\frac{2}{3}$,+∞)D.[1,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F为CE上的点,且BF⊥平面ACE,AC,BD交于G点
(1)求证:AE∥平面BFD
(2)求证:AE⊥平面BCE
(3)求三棱柱C-BGF的体积.

查看答案和解析>>

同步练习册答案