【题目】某数学兴趣小组共有12位同学,下图是他们某次数学竞赛成绩(满分100分)的茎叶图,
其中有一个数字模糊不清,图中用表示,规定成绩不低于80分为优秀.
(1)已知该12位同学竞赛成绩的中位数为78,求图中的值;
(2)从该12位同学中随机选3位同学,进行竞赛试卷分析,
设其中成绩优秀的人数为,求的分布列及数学期望与方差.
科目:高中数学 来源: 题型:
【题目】下列关于公差d>0的等差数列{an}的四个命题:
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列 是递增数列;
p4:数列{an+3nd}是递增数列;
其中真命题是( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面斜坐标系中,,平面上任意一点关于斜坐标系的斜坐标是这样定义的:若(其中,分别为与轴,轴同方向的单位向量),则点的斜坐标为
(1)若点在斜坐标系中的坐标为,求点到原点的距离.
(2)求以原点为圆心且半径为的圆在斜坐标系中的方程.
(3)在斜坐标系中,若直线交(2)中的圆于两点,则当为何值时,的面积取得最大值?并求此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年5月14日.第一届“一带一路国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年” 的人数之比为9:11
(1)根据已知条件完成上面的列联表,并判断能否有99%的把握认为关注“一带一路”是和年龄段有关?
(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查,在这9人中再取3人进打面对面询问,记选取的3人中“一带一路”的人数为X,求x的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1的方程为x2+(y+1)2=4,圆C2的圆心坐标为(2,1).
(1)若圆C1与圆C2相交于A,B两点,且|AB|=,求点C1到直线AB的距离;
(2)若圆C1与圆C2相内切,求圆C2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区为了解居民喜欢中华传统文化是否与年龄有关,随机调查了60位居民,相关数据统计如下表所示,
喜欢 | 不喜欢 | 合计 | |
大于45岁 | 26 | 6 | 32 |
25岁至45岁 | 13 | 15 | 28 |
合计 | 39 | 21 | 60 |
(Ⅰ)是否有99.5%以上的人把握认为喜欢中华传统文化与年龄有关?
(Ⅱ)按年龄采用分层抽样的方法从喜欢中华传统文化的受调查居民中随机抽取6人作进一步了解,若从这6位居民中任选2人,求这2人的年龄均大于45岁的概率.
附:
0.025 | 0.010 | 0.005 | 0,001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在区间上的值域为,则称区间为函数的一个“倒值区间”.定义在上的奇函数,当时,
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在上的“倒值区间”;
(Ⅲ)记函数在整个定义域内的“倒值区间”为,设,则是否存在实数,使得函数的图像与函数的图像有两个不同的交点?若存在,求出的值;若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com