精英家教网 > 高中数学 > 题目详情

【题目】某社区为了解居民喜欢中华传统文化是否与年龄有关,随机调查了60位居民,相关数据统计如下表所示,

喜欢

不喜欢

合计

大于45岁

26

6

32

25岁至45岁

13

15

28

合计

39

21

60

(Ⅰ)是否有99.5%以上的人把握认为喜欢中华传统文化与年龄有关?

(Ⅱ)按年龄采用分层抽样的方法从喜欢中华传统文化的受调查居民中随机抽取6人作进一步了解,若从这6位居民中任选2人,求这2人的年龄均大于45岁的概率.

附:

0.025

0.010

0.005

0,001

5.024

6.635

7.879

10.828

【答案】(1) 有99.5%以上的把握认为喜欢中华传统文化与年龄有关;

(2) .

【解析】分析:(Ⅰ)根据列联表,计算观测值,对照临界值得出结论;

(Ⅱ)按年龄采用分层抽样方法求出大于45岁和不大于45岁应抽取的人数,用列举法计算所求的概率值.

详解:(Ⅰ)

故有99.5%以上的把握认为喜欢中华传统文化与年龄有关;

(Ⅱ)从6人中任选2人,共15种不同结果,其中大于45岁的4人,25岁至45岁的2人,故选到的2人均大于45岁的不同结果有6种,故所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点分别为椭圆的左右顶点,点上,且面积的最大值为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设的左焦点,点在直线上,过的垂线交椭圆两点.证明:直线平分线段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如表所示((吨)为买进蔬菜的数量,(天)为销售天数):

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(1)根据上表数据在所给坐标系中绘制散点图,并用最小二乘法求出关于的线性回归方程

(2)根据(Ⅰ)中的计算结果,该蔬菜商店准备一次性买进25吨,预计需要销售多少天?

(参考数据和公式: .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )

A. 24 B. 8 C. 7 D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学兴趣小组共有12位同学,下图是他们某次数学竞赛成绩(满分100分)的茎叶图,

其中有一个数字模糊不清,图中用表示,规定成绩不低于80分为优秀.

(1)已知该12位同学竞赛成绩的中位数为78,求图中的值;

(2)从该12位同学中随机选3位同学,进行竞赛试卷分析,

设其中成绩优秀的人数为,求的分布列及数学期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(1)证明是等比数列,并求的通项公式;

(2)求

(3)设,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年推出一种新型家用轿车,购买时费用为16.9万元,每年应交付保险费、养路费及汽油费共1.2万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.

(I)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式;

(II)这种汽车使用多少报废最合算(即该车使用多少年,年平均费用最少)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案