精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=a(x-1)-2lnx(a∈R)
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在区间(0,1]上的最小值为0,求a的取值范围.

分析 (1)求出函数的导数,计算f′(1),f(1)的值,代入切线方程即可;(2)求出函数的导数,通过讨论a的范围,确定函数的单调区间,表示出最小值,得到关于a的方程,判断a的具体范围即可.

解答 解:(1)a=1时,f(x)=x-1-2lnx,x>0,
f′(x)=$\frac{x-2}{x}$,(x>0),
∴f′(1)=-1,f(1)=0,
故切线方程是:y-0=-1(x-1),
故x+y-1=0;
(2)f′(x)=$\frac{ax-2}{x}$,x∈(0,1],
a≤0时,f′(x)<0,f(x)在(0,1]递减,
∴f(x)min=f(1)=0,
0<a≤2时,f′(x)≤0,f(x)在(0,1]递减,
∴f(x)min=f(1)=0,
a>2时,令f′(x)<0,解得:0<x<$\frac{2}{a}$,令f′(x)>0,解得:$\frac{2}{a}$<x≤1,
∴f(x)在(0,$\frac{2}{a}$)递减,在($\frac{2}{a}$,1]递增,
∴f(x)min=f($\frac{2}{a}$)<f(1)=0(舍),
综上,a的范围是(-∞,2].

点评 本题考查了曲线的切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知集合A={x|x∈Z,x≥0},B={y|y=x2},则A与B的关系是A?B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,D为BC的中点,En为AC上的一列动点,且$\overrightarrow{{E}_{n}A}$=$\frac{1}{2}$an+1$\overrightarrow{{E}_{n}B}$-$\frac{1}{2}$(an-1)$\overrightarrow{{E}_{n}D}$.若a1=0,则an=(  )
A.1-($\frac{1}{2}$)nB.1-($\frac{1}{2}$)n-1C.($\frac{1}{2}$)n-1D.($\frac{1}{2}$)n-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={2,x2,x},B={2,2+x,1+2x},且A=B,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知关于x的不等式ax2-bx+c≥0的解集为{x|1≤x≤2},则cx2+bx+a≤0的解集为(-∞,-1]∪[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-axlnx,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设$g(x)=\frac{f(x)}{lnx}$,若函数g(x)在(1,+∞)上为减函数,求实数a的最小值;
(Ⅲ)若$?{x_0}∈[{e,{e^2}}]$,使得$f({x_0})≤\frac{1}{4}ln{x_0}$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+c(a,b∈R)若函数f(x)在x=0,x=2处取得极值,
(1)求a,b的值.
(2)若x∈[0,1],f(x)≤c2-2恒成立时,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P(1,-1)在抛物线C:y=ax2上,过点P作两条斜率互为相反数的直线分别交抛物线C于点A、B(异于点P).
(Ⅰ)求抛物线C的焦点坐标.
(Ⅱ)记直线AB交y轴于点(0,y0),求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.志强同学在一次课外研究性学习中发现以下一系列等式成立:$\frac{1+(\frac{1}{2})^{2}}{1+{2}^{2}}$=($\frac{1+\frac{1}{2}}{1+2}$)2,$\frac{1+{4}^{3}}{1+(\frac{1}{4})^{3}}$=($\frac{1+4}{1+\frac{1}{4}}$)3,$\frac{{1+{{({-\frac{{\sqrt{2}}}{2}})}^4}}}{{1+{{({-\sqrt{2}})}^4}}}={({\frac{{1-\frac{{\sqrt{2}}}{2}}}{{1-\sqrt{2}}}})^4}$,…,于是他想用符号表示这个规律,他已经写了一部分,请帮他补充完整,若a,b∈R,b≠1,ab=1,n∈N*,则$\frac{1+{a}^{n}}{1+{b}^{n}}=(\frac{1+a}{1+b})^{n}$.

查看答案和解析>>

同步练习册答案