精英家教网 > 高中数学 > 题目详情
2.化简:
(1)1+2${C}_{n}^{1}$+4C${\;}_{n}^{2}$+…+2nC${\;}_{n}^{n}$;
(2)(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).

分析 逆用二项式定理,计算即得结论.

解答 解:(1)由二项式定理可知1+2${C}_{n}^{1}$+4C${\;}_{n}^{2}$+…+2nC${\;}_{n}^{n}$
=(1+2)n
=3n
(2)由二项式定理可知(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)
=[(x-1)+1]5-1
=x5-1.

点评 本题考查二项式定理的应用,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知△ABC外接圆的圆心为O,且$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an},Sn为其前n项的和,满足Sn=$\frac{n(n+1)}{2}$.
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{a_n}$}的前n项和为Tn,数列{Tn}的前n项和为Rn,求证:当n≥2,n∈N*时Rn-1=n(Tn-1);
(3)已知当n∈N*,且n≥6时有(1-$\frac{m}{n+3}$)n<($\frac{1}{2}$)m,其中m=1,2,…,n,求满足3n+4n+…+(n+2)n=(an+3)an的所有n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=$\frac{3+2i}{2-3i}$,则z的共轭复数$\overline z$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f(n)具有性质P.
(1)求证:f(7)具有性质P;
(2)若存在n≤2016,使f(n)具有性质P,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?(  )
A.9日B.8日C.16日D.12日

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=f(x)满足f(3+x)=f(1-x)且f(1+x)=f(2-x),求证:y=f(x)是一个周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,则f(f(2))=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$间的夹角为$\frac{2π}{3}$,则|4$\overrightarrow{a}$-5$\overrightarrow{b}$|=$\sqrt{61}$.

查看答案和解析>>

同步练习册答案