精英家教网 > 高中数学 > 题目详情
19.设点P在曲线y=2ex上,点Q在曲线y=lnx-ln2上,则|PQ|的最小值为$\sqrt{2}$(1+ln2).

分析 考虑到两曲线关于直线y=x对称,求丨PQ丨的最小值可转化为求P到直线y=x的最小距离,再利用导数的几何意义,求曲线上斜率为1的切线方程,由点到直线的距离公式即可得到最小值.

解答 解:∵y=2ex与y=lnx-ln2互为反函数,
先求出曲线y=2ex上的点到直线y=x的最小距离.
设与直线y=x平行且与曲线y=2ex相切的切点P(x0,y0).
y′=2ex
∴2e${\;}^{{x}_{0}}$=1,解得x0=ln$\frac{1}{2}$=-ln2,
∴y0=2e${\;}^{ln\frac{1}{2}}$=1.
得到切点P(-ln2,1),
到直线y=x的距离d=$\frac{|-ln2-1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$(1+ln2),
可得丨PQ丨的最小值为2d=$\sqrt{2}$(1+ln2),
故答案为:$\sqrt{2}$(1+ln2).

点评 本题主要考查了互为反函数的函数图象的对称性,导数的几何意义,曲线的切线方程的求法,转化化归的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=1,a2=3,an+2=an+1+$\frac{1}{{a}_{n}}$,则a4=$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\frac{1}{\sqrt{1-x}}$的定义域为M,g(x)=lnx的定义域为N,则M∩N=(  )
A.{x|x>-1}B.{x|x<1}C.{x|0<x<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在我国古代数学名著《九章算术》中将底面为直角三角形,侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC-A1B1C1中,AB=BC,AA1>AB,堑堵的顶点C1到直线A1C的距离为m,C1到平面A1BC的距离为n,则$\frac{m}{n}$的取值范围是($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{3}{2}$x2+ax+1(a∈R).
(Ⅰ)当a=$\frac{1}{2}$时,求不等式f(x)<3的解集;
(Ⅱ)当0<x<2时,不等式f(x)>0恒成立,求实数a的取值范围;
(Ⅲ)求关于x的不等式f(x)-$\frac{1}{2}$a2-1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\left\{\begin{array}{l}{(4a-2)x+a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$,对任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则实数a的取值范围是[$\frac{2}{5}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若sinα-2cosα=$\sqrt{5}$,则tanα=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l的方程为3x+4y-12=0,求满足下列条件的直线l′的方程.
(1)l′与l平行且过点(-1,3);
(2)l′与l垂直且在两坐标轴上的截距相等.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c,x≤0}\\{2,x>0}\end{array}\right.$,若f(-4)=2,f(-2)=-2,则关于x的方程f(x)=x的解的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案