分析 (1)由双曲线Γ的方程为x2-$\frac{{y}^{2}}{3}$=1,可得c=$\sqrt{1+3}$=2,可得右焦点F(2,0).当l1垂直于x轴,t=-2时,由双曲线的对称性可得:四边形ABDC为矩形.即可得出面积.
(2)作出右准线MN:x=$\frac{1}{2}$.e=$\frac{c}{a}$=2.分别作AC⊥MN,垂足为M;BD⊥MN,垂足为N.利用双曲线的第二定义可得:$\frac{|AC|}{|AF|}$=$\frac{|AM|+\frac{1}{2}}{|AF|}$,$\frac{|FB|}{|BD|}$=$\frac{1}{\frac{|BD|}{|FB|}}$=$\frac{1}{\frac{|BN|+\frac{1}{2}}{|FB|}}$.
(3)存在实数t∈(-1,1),t=$\frac{1}{2}$时,定点$(\frac{5}{4},0)$.下面给出证明分析:设直线AB的方程为:y=k(x-2),A(x1,k(x1-2)),B(x2,k(x2-2)).则C(t,k(x1-2)),D(t,k(x2-2)).直线方程与双曲线方程联立化为:(3-k2)x2+4k2x-4k2-3=0,分别得出:直线AD与BC的方程,进而得出.
解答 解:(1)由双曲线Γ的方程为x2-$\frac{{y}^{2}}{3}$=1,可得c=$\sqrt{1+3}$=2,可得右焦点F(2,0).![]()
当l1垂直于x轴,t=-2时,由双曲线的对称性可得:四边形ABDC为矩形.
代入双曲线可得:22-$\frac{{y}^{2}}{3}$=1,焦点y=±3.
∴四边形ABDC的面积S=4×6=24.
(2)作出右准线MN:x=$\frac{1}{2}$.e=$\frac{c}{a}$=2.
分别作AC⊥MN,垂足为M;BD⊥MN,垂足为N.
则$\frac{|AC|}{|AF|}$=$\frac{|AM|+\frac{1}{2}}{|AF|}$=$\frac{1}{2}$+$\frac{1}{2|AF|}$.
$\frac{|FB|}{|BD|}$=$\frac{1}{\frac{|BD|}{|FB|}}$=$\frac{1}{\frac{|BN|+\frac{1}{2}}{|FB|}}$=$\frac{1}{\frac{1}{2}+\frac{1}{2|FB|}}$.
∵|AF|>|FB|,∴$\frac{1}{|AF|}$<$\frac{1}{|FB|}$.
∴$\frac{|AC|•|FB|}{|BD|•|FA|}$<1.
(3)存在实数t∈(-1,1),t=$\frac{1}{2}$时,定点$(\frac{5}{4},0)$.下面给出证明:
设直线AB的方程为:y=k(x-2),A(x1,k(x1-2)),B(x2,k(x2-2)).
则C(t,k(x1-2)),D(t,k(x2-2)).
联立$\left\{\begin{array}{l}{y=k(x-2)}\\{{x}^{2}-\frac{{y}^{2}}{3}=1}\end{array}\right.$,化为:(3-k2)x2+4k2x-4k2-3=0,
可得x1+x2=$\frac{-4{k}^{2}}{3-{k}^{2}}$,x1•x2=$\frac{-4{k}^{2}-3}{3-{k}^{2}}$.
直线AD的方程为:y-k(x1-2)=$\frac{k({x}_{1}-{x}_{2})}{{x}_{1}-t}$(x-x1),令y=0,解得x=$\frac{2{x}_{1}-2t+t{x}_{1}-{x}_{1}{x}_{2}}{{x}_{1}-{x}_{2}}$.
直线BC的方程为:y-k(x2-2)=$\frac{k({x}_{1}-{x}_{2})}{t-{x}_{2}}$(x-x2),令y=0,解得x=$\frac{2t-2{x}_{2}-t{x}_{2}+{x}_{1}{x}_{2}}{{x}_{1}-{x}_{2}}$.
由$\frac{2{x}_{1}-2t+t{x}_{1}-{x}_{1}{x}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{2t-2{x}_{2}-t{x}_{2}+{x}_{1}{x}_{2}}{{x}_{1}-{x}_{2}}$,可得:(2+t)(x1+x2)-2x1•x2-4t=0.
∴(2+t)•$\frac{-4{k}^{2}}{3-{k}^{2}}$-2•$\frac{-4{k}^{2}-3}{3-{k}^{2}}$-4t=0.
化为:t=$\frac{1}{2}$,不妨取k=1,则2x2+4x-7=0,
解得x=$\frac{-2±3\sqrt{2}}{2}$.不妨取x1=$\frac{-2+3\sqrt{2}}{2}$,x2=$\frac{-2-3\sqrt{2}}{2}$.
定点的横坐标x=$\frac{2{x}_{1}-1+\frac{1}{2}{x}_{1}-{x}_{1}{x}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{\frac{5}{2}×\frac{-2+3\sqrt{2}}{2}-1-(-\frac{7}{2})}{3\sqrt{2}}$=$\frac{5}{4}$.
∴定点坐标$(\frac{5}{4},0)$.
点评 本题考查了双曲线的第二定义、直线与双曲线相交问题、一元二次方程的根与系数的关系、直线过定点问题,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\sqrt{3}$p,0) | B. | (-2$\sqrt{3}$p,0) | C. | (-$\frac{\sqrt{3}p}{3}$,0) | D. | (-$\frac{2\sqrt{3}p}{3}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 10 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | $\frac{{\sqrt{5}-1}}{2}$ | C. | $\sqrt{5}-1$ | D. | $\sqrt{5}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 回归直线过样本点的中心($\overline{x}$,$\overline{y}$) | |
| B. | 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1 | |
| C. | 对分类变量X与Y,随机变量K2的观测值越大,则判断“X与Y有关系”的把握程度越小 | |
| D. | 在回归直线方程$\stackrel{∧}{y}$=0.2x+0.8中,当解释变量x每增加1个单位时预报变量$\stackrel{∧}{y}$平均增加0.2个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com