精英家教网 > 高中数学 > 题目详情
3.下列说法错误的是(  )
A.回归直线过样本点的中心($\overline{x}$,$\overline{y}$)
B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1
C.对分类变量X与Y,随机变量K2的观测值越大,则判断“X与Y有关系”的把握程度越小
D.在回归直线方程$\stackrel{∧}{y}$=0.2x+0.8中,当解释变量x每增加1个单位时预报变量$\stackrel{∧}{y}$平均增加0.2个单位

分析 利用线性回归的有关知识即可判断出.

解答 解:A.回归直线过样本点的中心($\overline{x}$,$\overline{y}$),正确;
B.两个随机变量相关性越强,则相关系数的绝对值越接近1,因此正确;
C.对分类变量X与Y的随机变量K2的观测值k来说,k越大,“X与Y有关系”可信程度越大,因此不正确;
D.在线性回归方程$\stackrel{∧}{y}$=0.2x+0.8中,当x每增加1个单位时,预报量平均增加0.2个单位,正确.
综上可知:只有C不正确.
故选:C.

点评 本题考查了线性回归的有关知识,考查了推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若a=($\frac{1}{2}$)${\;}^{\frac{1}{5}}$,b=($\frac{1}{5}$)${\;}^{-\frac{1}{2}}$,c=log${\;}_{\frac{1}{5}}$10,则a,b,c大小关系为(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设命题p:函数f(x)=lg(ax2-2x+1)的定义域为R;命题q:当$x∈[\frac{1}{2},\;2]$时,$x+\frac{1}{x}>a$恒成立,如果命题“p∧q”为真命题,则实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a,b∈R,若a>b,则(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.2a>2bC.lga>lgbD.sina>sinb

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设双曲线Γ的方程为x2-$\frac{{y}^{2}}{3}$=1,过其右焦点F且斜率不为零的直线l1与双曲线交于A、B两点,直线l2的方程为x=t,A、B在直线l2上的射影分别为C、D.
(1)当l1垂直于x轴,t=-2时,求四边形ABDC的面积;
(2)当t=0,l1的斜率为正实数,A在第一象限,B在第四象限时,试比较$\frac{|AC|•|FB|}{|BD|•|FA|}$和1的大小,并说明理由;
(3)是否存在实数t∈(-1,1),使得对满足题意的任意直线l1,直线AD和直线BC的交点总在x轴上,若存在,求出所有的t的值和此时直线AD与BC交点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若2x+y+k≥0恒成立,则直线2x+y+k=0被圆(x-1)2+(y-2)2=25截得的弦长的最大值为(  )
A.10B.2$\sqrt{5}$C.4$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的图象关于x=-1对称,且f(x)在(-1,+∞)上单调,若数列{an}是公差不为0的等差数列,且f(a50)=f(a51),则{an}的前100项的和为(  )
A.-200B.-100C.-50D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,输出的y等于(  )
A.$\frac{1}{2}$B.0C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+π)}{-tan(-α-π)cos(\frac{π}{2}-α)}$
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

同步练习册答案