精英家教网 > 高中数学 > 题目详情
5.关于x,y的不等式组$\left\{\begin{array}{l}x+y-3≥0\\ x-2y+3≥0\\ x-2≤0\end{array}\right.$,表示的区域为D,若区域D内存在满足t≤3x-y的点,则实数t的取值范围为(  )
A.(-∞,1]B.[1,+∞)C.(-∞,5]D.[5,+∞)

分析 首先画出可行域,利用z=3x-y的几何意义求出z 的最大值,根据区域D内存在满足t≤3x-y的点,只要t≤(3x-y)max即可.

解答 解:由已知得到平面区域如图:区域D内存在满足t≤3x-y的点,即区域D内存在满足t≤(3x-y)max
由题意,当直线y=3x-z经过图中A(2,1)时,使得3x-y最大,最大为2×3-1=5,
所以t≤5;
故选:C.

点评 本题考查的知识点是简单线性规划的应用.我们在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-a|
(I) 若对x∈[0,4]不等式f(x)≤3恒成立,求实数a的取值范围;
(II) 当a=2时,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线C:y2=2px(p>0)的焦点F,准线l,点A为C上一点,以F为圆心,FA为半径作圆交l于B、D两点,∠BFD=120°,△ABD的面积为4$\sqrt{3}$,则p的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-alnx,a∈R.
(Ⅰ)研究函数f(x)的单调性;
(Ⅱ)设函数f(x)有两个不同的零点x1、x2,且x1<x2
(1)求a的取值范围;               
(2)求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,若z(1+i)=1+3i,则$\overline z$=(  )
A.2-iB.2+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图△ABC和△ABD均为等腰直角三角形,AD⊥BD,AC⊥BC,平面ABC⊥平面ABD,EC⊥平面ABC,EC=1,$AD=2\sqrt{2}$.
(1)证明:DE⊥AB;
(2)求二面角D-BE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow a$与$\overrightarrow b$满足$|{\overrightarrow a}|=2|{\overrightarrow b}|$,若向量$\overrightarrow c=\overrightarrow a+\overrightarrow b$,且$\overrightarrow c⊥\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知四棱锥的正视图与俯视图如图所示,该四棱锥的体积为24,则四棱锥的侧视图面积为6,四棱锥的表面积为60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若正整数N除以正整数m后的余数为n,则记为N≡n(bmodm),例如10≡4(bmod6),如图程序框图的算法源于我国古代《孙子算经》中的“孙子定理”的某一环节,执行该框图,输入a=2,b=3,c=5,则输出的N=(  )
A.6B.9C.12D.21

查看答案和解析>>

同步练习册答案