精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{(1-a)x+a(x<0)}\\{(a-3){x}^{2}+2(x≥0)}\end{array}\right.$,在(-∞,+∞)上是减函数,则实数a的取值范围为(  )
A.(2,3)B.[2,3)C.(1,3)D.[1,3]

分析 由一次函数与二次函数的单调性可得:$\left\{\begin{array}{l}{1-a<0}\\{a-3<0}\\{a≥2}\end{array}\right.$,解出即可得出.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(1-a)x+a(x<0)}\\{(a-3){x}^{2}+2(x≥0)}\end{array}\right.$,在(-∞,+∞)上是减函数,
∴$\left\{\begin{array}{l}{1-a<0}\\{a-3<0}\\{a≥2}\end{array}\right.$,解得2≤a<3.
∴实数a的取值范围为[2,3).
故选:B.

点评 本题考查了一次函数与二次函数的单调性、分段函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且满足Sn=2an+n(n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义域为R的函数f(x)满足:①f(x)+f(-x)=0(x∈R);②f(-3)=0;③[f(x1)-f(x2)](x1-x2)>0,(x1,x2∈R+,x1≠x2).则不等式x•f(x)<0的解集是(  )
A.{x|-3<x<0或x>3}B.{x|x<-3或0≤x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2 016)=336.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex+be-x,(b∈R),函数g(x)=2asinx,(a∈R).
(1)求函数f(x)的单调区间;
(2)若b=-1,f(x)>g(x),x∈(0,π),求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定积分的${∫}_{1}^{e}$$\frac{1}{x}$dx-${∫}_{0}^{\frac{π}{2}}$sinxdx的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x2-cosx,x∈[-2,2],若f(2m-1)>f(m),则m的取值范围为[-$\frac{1}{2}$,$\frac{1}{3}$)∪(1,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax-lnx,其中x>0,a∈R.
(1)讨论函数f(x)的单调区间;
(2)若存在x>0,使得f′(x)>lnx,求实数a的取值范围.

查看答案和解析>>

同步练习册答案