分析 求出f(x)是偶函数,求出x∈[0,2]时,f′(x)>0,得到f(x)在[0,2]递增,在[-2,0]递减,根据函数的单调性得到关于m的不等式组,解出即可.
解答 解:∵f(x)=x2-cosx,x∈[-2,2],
∴f(-x)=(-x)2-sos(-x)=x2-cosx=f(x),
∴f(x)在[-2,2]是偶函数,
∴x∈[0,2]时,f′(x)=2x+sinx>0,
故f(x)在[0,2]递增,在[-2,0]递减,
∴$\left\{\begin{array}{l}{|2m-1|>|m|}\\{-2≤2m-1≤2}\\{-2≤m≤2}\end{array}\right.$,解得:-$\frac{1}{2}$≤m<$\frac{1}{3}$或1<x≤$\frac{3}{2}$,
故答案为:[-$\frac{1}{2}$,$\frac{1}{3}$)∪(1,$\frac{3}{2}$].
点评 本题考查了函数的奇偶性、单调性问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | (2,3) | B. | [2,3) | C. | (1,3) | D. | [1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在(-∞,0)上为减函数 | B. | 在x=1处取极小值 | ||
| C. | 在x=2处取极大值 | D. | 在(4,+∞)上为减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{6}}}{2}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com