分析 (1)对f(x)求导得到单调区间;(2)由(1)得,fn(x)=nx3+2x-n在R上单调递增,证明fn($\frac{n}{n+1}$)=-($\frac{n}{n+1}$)3( $\frac{{n}^{2}-n-1}{{n}^{2}}$)即可.
解答 解:(1)f′(x)=3ax2+2,
若a≥0,则f′(x)>0,函数f(x)在R上单调递增;
若a<0,令f'(x)>0,∴x>$\sqrt{\frac{2}{3a}}$或x<-$\sqrt{\frac{2}{3a}}$,
函数f(x)的单调递增区间为(-∞,$\sqrt{\frac{2}{3a}}$)和($\sqrt{\frac{2}{3a}}$,+∞);
(2)证明:由(1)得,fn(x)=nx3+2x-n在R上单调递增,
又fn(1)=n+2-n=2>0,
fn(2)=n23+2×2-n=8n+4-n=7n+4>0,
fn($\frac{n}{n+1}$)=n($\frac{n}{n+1}$)3+2($\frac{n}{n+1}$)-n=-($\frac{n}{n+1}$)3( $\frac{{n}^{2}-n-1}{{n}^{2}}$),
当n≥2时,g(n)=n2-n-1>0,fn($\frac{n}{n+1}$)<0,
n≥2时存在唯一xn且xn∈($\frac{n}{n+1}$,1).
点评 本题主要考查了导数的求单调区间的方法以及函数的零点问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 支持 | 保留 | 不支持 | |
| 80后 | 780 | 420 | 200 |
| 70后 | 120 | 180 | 300 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com