精英家教网 > 高中数学 > 题目详情
4.为了促进人口的均衡发展,我国从2016年1月1日起,全国统一实施全面放开两孩政策.为了解适龄国民对放开生育二胎政策的态度,某部门选取70后和80后年龄段的人作为调查对象,进行了问卷调查,其中,持“支持生二胎”、“不支持生二胎”和“保留意见”态度的人数如表所示:
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,其中持“支持”态度的人共36人,求n的值;
(2)在持“不支持”态度的人中,仍用分层抽样的方法抽取5人,并将其看成一个总体,从这5人中任意选取2人,求至少有1个80后的概率.
支持保留不支持
80后780420200
70后120180300

分析 (1)根据在抽样过程中每个个体被抽到的概率相等,写出比例式,使得比例相等,得到关于n的方程,解方程即可.
(2)由题意知本题是一个等可能事件的概率,本题解题的关键是列举出所有事件的事件数,再列举出满足条件的事件数,得到概率.

解答 解:(1)所有参与调查的人数为780+120+420+180+200+300=2000.
由分层抽样知$n=\frac{36}{900}×2000=80$…(5分)
(2)由分层抽样知抽取的5人中有2个80后(记为甲、乙),3个70后(记为A、B、C)
则从中任取两个,共有以下10种等可能的基本事件:
(甲,乙)、(甲,A)、(甲,B )、(甲,C)、(乙,A )、( 乙,B )、(乙,C )、(A,B)、(A,C)、(B,C),…(7分)
其中至少有1个80后的基本事件有(甲,乙)、(甲,A)、(甲,B)、(甲,C)、
(乙,A )、(乙,B )、(乙,C )共7种.…(9分)
故至少有1个80后的概率为$P=\frac{7}{10}$…(12分)

点评 本题主要考查分层抽样的定义和方法,古典概型及其概率计算公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax3+2x-a,
(1)求函数f(x)的单调递增区间;
(2)若a=n,且n∈N*,设xn是函数${f_n}(x)=n{x^3}+2x-n$的零点,证明:当n≥2时存在唯一xn,且${x_n}∈(\frac{n}{n+1},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+ax(a∈R).
(1)当a=-1时,求函数f(x)的单调区间;
(2)如果函数g(x)=f(x)+$\frac{2}{x}$在(0,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设$a=\frac{ln3}{3}$,$b=\frac{ln4}{4}$,$c=\frac{ln5}{5}$,则a、b、c的大小关系为(  )
A.a>b>cB.c>b>aC.b>c>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平行六面体ABCD-A1B1C1D1中,AC与BD的交点为M,设$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow{a}$,$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow{b}$,$\overrightarrow{{A}_{1}A}$=$\overrightarrow{c}$,则$\overrightarrow{{D}_{1}M}$=(  )
A.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$B.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$D.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1,F2为等轴双曲线C的焦点,点P在C上,|PFl|=2|PF2|,则cos∠F1PF2=(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,正三角形ABC的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=(\sqrt{3}cosx-sinx)sinx$,x∈R.
(Ⅰ)求函数f(x)的最小正周期与单调增区间;
(Ⅱ)求函数f(x)在$[{0,\frac{π}{4}}]$上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某四棱锥的三视图如图所示,则该四棱锥的外接球的表面积是(  )
A.B.C.12πD.24π

查看答案和解析>>

同步练习册答案