精英家教网 > 高中数学 > 题目详情
19.函数f(x)=$\frac{1}{3}$x3-x2单调递减区间是(0,2).

分析 求出函数的导数,令f′(x)<0,解不等式即可.

解答 解:∵$f(x)=\frac{1}{3}{x^3}-{x^2}$,
∴f′(x)=x2-2x=x(x-2),
令f′(x)<0,解得:0<x<2,
故函数的单调递减区间是(0,2),
故答案为:(0,2).

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若抛物线x2=8y焦点与双曲线$\frac{y^2}{m}-{x^2}=1$的一个焦点重合,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m为整数),则m称为距离实数x最近的整数,记作{x},即{x}=m.在此基础上给出关于函数f(x)=x-{x}的四个命题:
①函数f(x)的定义域为R,值域为$({-\frac{1}{2},\frac{1}{2}}]$;   ②函数f(x)的图象关于原点对称;
③函数f(x)的图象关于y轴对称;            ④函数f(x)在$({-\frac{1}{2},\frac{1}{2}}]$上是增函数.
则其中正确命题的序号是①④.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex(x2+ax-a+1),其中a为常数.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在其定义域内存在减区间,求a的取值范围;
(3)若关于x的方程f(x)=ex+k在[0,+∞)上有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax3+2x-a,
(1)求函数f(x)的单调递增区间;
(2)若a=n,且n∈N*,设xn是函数${f_n}(x)=n{x^3}+2x-n$的零点,证明:当n≥2时存在唯一xn,且${x_n}∈(\frac{n}{n+1},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)分别是f(x)和g(x)的导函数,若f′(x)g′(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致.设a>0,若f(x)和g(x)在区间[-1,+∞)上单调性一致,则b的取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x3-$\frac{9}{2}$x2+6x+m.
(1)对于x∈R,f′(x)≥a恒成立,求a的最大值;
(2)若方程f(x)=0有且仅有一个实根,求m的取值范围;
(3)当m=2时,若函数g(x)=$\frac{f(x)}{x}$+$\frac{9}{2}$x-6+2blnx(b≠0)在[1,2]上单调递减,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1,F2为等轴双曲线C的焦点,点P在C上,|PFl|=2|PF2|,则cos∠F1PF2=(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案