分析 显然函数f(x)的定义域为R,再由定义确定值域;
特例,f($\frac{1}{2}$)=$\frac{1}{2}$-{$\frac{1}{2}$}=$\frac{1}{2}$,f(-$\frac{1}{2}$)=-$\frac{1}{2}$-{-$\frac{1}{2}$}=$\frac{1}{2}$;
特例,f($\frac{1}{4}$)=$\frac{1}{4}$-{$\frac{1}{4}$}=$\frac{1}{4}$,f(-$\frac{1}{4}$)=-$\frac{1}{4}$-{-$\frac{1}{4}$}=-$\frac{1}{4}$;
当x∈$({-\frac{1}{2},\frac{1}{2}}]$时,化简f(x)=x-{x}=x.
解答 解:函数f(x)的定义域为R,
∵m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$,{x}=m,
∴$-\frac{1}{2}$<x-{x}≤$\frac{1}{2}$,
故值域为$({-\frac{1}{2},\frac{1}{2}}]$;
故①正确;
f($\frac{1}{2}$)=$\frac{1}{2}$-{$\frac{1}{2}$}=$\frac{1}{2}$,f(-$\frac{1}{2}$)=-$\frac{1}{2}$-{-$\frac{1}{2}$}=$\frac{1}{2}$,
故②不正确;
f($\frac{1}{4}$)=$\frac{1}{4}$-{$\frac{1}{4}$}=$\frac{1}{4}$,f(-$\frac{1}{4}$)=-$\frac{1}{4}$-{-$\frac{1}{4}$}=-$\frac{1}{4}$,
故③不正确;
当x∈$({-\frac{1}{2},\frac{1}{2}}]$时,f(x)=x-{x}=x,故是增函数,
故④正确;
故答案为:①④.
点评 本题考查了函数的性质的判断与应用,同时考查了学生的学习应用能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若x≠0,则x+$\frac{1}{x}$≥2 | |
| B. | “a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件 | |
| C. | 若命题p:任意x∈R,x2-x+1<0,则¬p:存在x∈R,x2-x+1>0 | |
| D. | 命题:若x2=1,则x=1或x=-1的逆否命题为:若x≠1且x≠-1,则x2≠1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com