精英家教网 > 高中数学 > 题目详情

已知函数为奇函数,且相邻两对称轴间的距离为
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

(1);(2)

解析试题分析:(1)先用余弦二倍角公式将其降幂,再用两角和差公式的逆用即化一公式将其化简为,两相邻对称轴间的距离为半个周期,从而可得的值,由函数为奇函数可求的值。根据求整体角的范围。再此范围内将整体角代入正弦的单调减区,解得的范围,即为所求。(2)先将替换,再将替换即可得函数。根据的范围得整体角的范围,结合函数图像求函数的值域。
(1)由题知,
∵相邻两对称轴的距离为,∴,          3分
又∵为奇函数,∴,
, ∴, 即,                       5分
要使单调递减, 需,
的单调减区间为.                         7分
(2) 由题知,                                   9分
,  ∴,
 ,,                   
∴函数的值域为                                 12分
考点:1三角函数的周期性奇偶性;2三角函数的单调性;3三角函数伸缩平移变换。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(1)求函数的周期;(2)求函数的单调递增区间;(3)若时,的最小值为– 2 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=6cos2sin ωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.

(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=,且x0,求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若角的终边过点P
(1)求的值
(2)试判断的符号

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的值域;
(2)若函数的最小正周期为,则当时,求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,的图象关于直线对称,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的最小正周期和单调增区间.
(2)函数的图象可以由函数的图象经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最大值及取最大值时x的取值集合;
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的定义域和最小正周期;
(2)若,求的值.

查看答案和解析>>

同步练习册答案