精英家教网 > 高中数学 > 题目详情

已知长方体,点的中点.

(1)求证:
(2)若,试问在线段上是否存在点使得,若存在求出,若不存在,说明理由.

(1)证明详见解析;(2)存在,证明详见解析.

解析试题分析:(1)设的交点为,由三角形的中位线可证∥AB1,,最后根据直线与平面平行的判定定理可证;(2)假设存在,连结于点,由直线与平面垂直的性质定理可得BC⊥AE,由直线与平面垂直的判定定理可得AE⊥平面,即得证.根据两对应角相等,三角形相似证得Rt△ABE~Rt△A1AB,有相似比可证的的比值.
试题解析:(1)证明:
连结于点,所以的中点,连结
中,的中点
           4分

           7分

(2)若在线段上存在点,连结于点
 




           10分
中有:
同理:
           12分


即在线段上存在点    14分

考点:1.直线与平面平行的判定定理;2.直线与平面垂直的判定和性质定理;3.三角形相似和相似三角形的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求直线B1C1与平面A1BC1所成角的正弦值;
(2)在线段BC1上确定一点D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,矩形所在的平面与正方形所在的平面相互垂直,的中点.

(1)求证:∥平面
(2)求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,垂直圆所在的平面,是圆上的点.

(1)求证:平面
(2)设的中点,的重心,求证://平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:

(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形,平面分别为的中点.

(1)求证:平面
(2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点的中点.

(1)求证:直线平面
(2)求证:平面平面
(3)求与平面所成的角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

(Ⅰ)求证:
(Ⅱ)设

查看答案和解析>>

同步练习册答案